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SUMMARY

This report represents the final report on work carried
out under Grant NGR-34-002-038 during the”period ending June 30,
1968. The report deals with the effects of geometric deviations
and nonlinearities in coherent optical data processors. The
study was carried out by James P. Moffatt under the direction
of Dr. Frederick J. Tischer. The material was presented in
part in previous interim reports. . The resulting report was
submitted by Mr. Moffatt as a dissertation for the degree of
Doctor of Philosophy at the North Carolina State University
at Raleigh, N. C.

The study deals with signal distortions in optical data
processors, particularly optical correlators, caused by de-
partures of signal-carrying surfaces from specified geometry
(geometric deviations) and by nonlinearities. The nonlinear-
ities are incurred in signal recording. It is the first
phaseof a more comprehensive investigation of error effects
in data processing and holography. In the reported study,
methods are developed for the description of the error effects.
An equivalent noise-to-signal ratio is introduced for the
description of the severity of the signal distortions. This
method allows numerical comparisons and evaluations of the
various effects. It also facilitates optimization of data
processing and holographic reproduction systems. Effects of
geometric deviations and nonlinearities were evaluated by this

method. The results are presented in this report.



A novel method of analyzing nonlinearities encountered
in optical signal recording is also developed in the present:
study. The method is based on Tchebyscheff expansions of non-
linear characteristics. In a comparison of various expansion
methods, Tchebyscheff polynomials were found to be particular-.
ly well suited to this problem. It should be mentioned that
the Tchebyscheff expansion method also can be applied for
considering nonlinear effects in other nonoptical subject
areas. Numerical methods and a computer program for the
determination of the Tchebyscheff coefficients are- developed.
The program is then applied to an analysis of the characteris-
tic curves of Type 649-F spectroscopic plates.

it was ihdicated above that' the present study represents
the first phase of a more comprehensive investigation. The
reason for this statement is the fact that the methods devel-
oped and described in this report open ways for further
studies which could not be carried out in the past since
they led to excessively complicated relationships. Evaluation
and comparison of photographic chlraracteristic curves and of
other optical recording principles, distortions in "noisy"
optical systems, the effects of nonlinearities in specialized
data processing systems and in holography are topics under

continued investigation.
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1. INTRODUCTION

Research in the area of optical data processing has
existed for at least two decades. The advent of the laser as
‘a convenient source of coherent quasi—honochromatic light,
however, has increased interest in the subject. With the
assumption of coherent light such as obtained from a laser,
imaging properties of lenses in optical systems can be
described by two-dimensional complex Fourier transforms.

Image forms in such systems can thus be directly related to
frequency and time domain representations of equivalent
electrical signals. Because of this relation, optical systems
employing coherent light can conveniently perform a wide
variety of data processing operations.

This investigation is concerned with the analysis of two
sources of signal distortions in optical data processors em-
ploying coherent light. The first of these can be described
as deviations from optimum geometry of the surfaces on which
signals are introduced to such processors. The deviations
exist because of alignment errors and mechanical tolerances
that are incurred in the construction of the processor.
Specific models for these geometric deviations are introduced,
and the signal distortions resulting from the models are de-
rived. The distortions are quantitatively related to the para-
meters which characterize the geometry of the models.

The second source of signal distortions consists of non-

linearities which are incurred in the recording of signals in



2
optical form. A method of analysis is developed which allows
determination of the extent to which the nonlinearities affect
data processing. The method is implemented in the forﬁ of a
digital computer program which facilitates rapid and thorough
analysis of nonlinear transfer characteristics and allows
determination of conditions under which nonlinear effects are
minimized. The program is used to analyze the nonlinearities
of type 649-F spectroscopic plates which are widely used in

optical data processing.



2. REVIEW OF THE LITERATURE

2.1 Coherent: Optical Data Processors

In a number of recent papers (Cutrona, 1960, 1964;
Preston, 1965) thé use:of optical systems for data process;ng
operations has been described. More specifically. systems
employing coherent illumination have been shown to be capable
of performing operations such as: spectral analysis, fre--
quency domain filtering, crosscorrelation, autocorrelation,
and convolution. A conceptual model of a optical system
employing coherent illumination is abstracted from. the above
literature. By assuming various input and output devices,
the model is able to perform the data processing operations
mentioned. The model serves as an introduction to coherent
optical data processors and provides a basis for discussing
the literature reviewed in the next section.

In optical systems employing coherent light, image forms
in sucessive focal planes are approximately related by two-
dimensional Fourier trahsforms. This property allows such
systems to process data spatially and constitutes one of
their primary advantages. The Fourier transform imaging
properties of such systems have been known for some time
(Rhodes, 1953) but the lack of a convenient source of coher-
ent illumination has hindered their development. With the
advent of the laser, however, this difficulty has been

overcome.



Figure 2.1 shows the geometric configuration of the
optical system model. A point source of monochromatic
illumination is placed at thg left~hand focus of lens Ll and
imaging occurs in the system;from left to right. The planes
Pl through P4 coincide with the focal planes of the lenses.
The focal length of each lens is f. Because of the imaging
properties of the lenses, sucessive focal planes are illu-
minated by the two-dimensional Fourier transforms of the
complex light amplitude distributions emerging from their
predecessors. Various light and electro-optic modulating
devices can thus be placed in the planes to perform data
processing operations. 1In the following description of the
operation of various configurations of the system, *the
Fourier transform relations are assumed in one dimension
only. This allows direct analogies to be made to electriéal
systems.

The imaging properties of lens Lj; cause: a. uniform
distribution of light to appear at the left-hand surface of
plane Pj. The amplitude distribution in the x; direction
can be described in complex presentation as

.2Tc o
ar(xy) = dge? A T, (2.1)
where ¢ is’ the:velocity of: light, A is the wavelengtb of. the
coherent source, t is time, and do is an amplitude constant

related to the intensity of theHSQurcew
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A photographic transparency placed in plane P, serves as
a means of modulating the distribution di. - The transparency
can be described by an amplitude transmittance function Sl(xl)
which relates the amplitude of the illumination transmitted
by the transparency to that which is incident. The functional

form of s; represents a signal which has been previously

optically recorded with the addition of a bias such that

0 < sy < l. With the distribution di incident on the trans-

parency, the complex amplitude distribution on the right-‘

hand side of plane P; becomes

_ j2nec t

In order to simplify the presentation, the constant d, is
assumed to be unity and the exponential time function is

suppressed. Egquation (2.2) then becomes

dl(Xl) = Sl(Xl). . (2.3)

The imaging properties of lens L, cause a distribution

. corresponding to the Fourier tranéform of dl(xl) to appear

at the left-hand side of plane P2. This can be written as

dé(wz) = F[sl(xl)] = Sl(wz), (2.4)

-
L]

where F represents the Fourier transformation, S; the trans-

form of s; and the raddian frequency wy is related to Xy by

21

>



A light sensor, such as a photocell, placed in plane P can
be used to obtain information about the frequency function
81. If the output of the sensor is proportional to the
intensity of the incident illumination and the sensor is

moved along the x5 axis, an output given by

Viwy) = Sq(wy) S1%(w,), (2.6)

appears (the asterisk denotes the complex conjugate).
Inspection of Eq. (2.6) shows that the sensor's output cor-
responds to the spectral density of Sl' The operation of
spectral analysis can thus be performed in the plane P,.

If a photographic transparency having an amplitude
transmittance function described by Sz(wz) is placed in the
plane P2 and the distribution dé is incident, the light

emerging from the transparency is described by

dz(wz) = Sl(WZ) Sz(wz). (2.7)

This expression.cdrréspondspto?the'paSSagewof;theusignalﬂsi
through a filter having a transfer function S,(wp). Although
the amplitude transmittance function of a transparency is
restricted to be real such that 0 < S, < 1, both negative

and complex values for S, can be introduced in the plane Py
by the use of phase modulating media such as thermoplastic
films. The operation of frequency domain filtering can thus
be performed in plane Py. The lens L3 causes a distribution
given by

dj(xy) = F[S,(w,) S, (wy)], (2.8)



to appear at the left-hand side of plane P3. Since the Fourier

transform has the properties

F“l{F[s(x)]} = s(x) . (2.9)

and

P{F[s(x)]} = s(-x), (2.10)

the distribution dé corresponds to a reflection about x = 0
of the inverse transform of the product S$;S,. If the reflec-

tion is neglected, dé becomes

d§(§3) = S sy (x3- p) S,(p) dp (2.11)

where

s, = F7i(s,] - (2.12)

The convolution expression (2.11l) corresponds to the output
of the filter and S, represents its impulse response. If a
light sensor responding linearly to light amplitude is placed
in plane P5 and traversed along the X3 axis, the output cor-
responds to Eg. (2.11).

The optical system can be used to perform operations of
convolution and correlation by placing transparencies con-
taining signal functions in planes P; and P3. If, as before,
the amplitude transmittance of the transparency in plane Py

is described by sl(xl), so that

,dl(xl) = Sl(X): (2.13)

the lenses L, and L3 cause a reflected image (double Fourier



transform) of dj to appear at the left-hand side of P3. If

the reflection is neglected,
dé(X3) = Sl(x3)' (2.14)

With the amplitude transmittance of the transparency in plane
P3 given by s3(x3), the light emerging from the plane is

described by
d3(x3) = sl(x3) s3(x3). - (2.15)

"If the transparency in plane Py is translated in the negative

X, direction by an amount u, Eg. (2.15) becomes

dg(x3) = sl(x3+ u) s3(x3). . (2.16)

The lens Ly causes the Fourier transform of Eq. (2.16) to

appear at the left~hand side of P4 so that

where w, is related to x4 by an expression similar to

- Eg. (2.5). Equation (2.17) can also be written

a; (w,) = S s (et W) s, (x, yel 4%3 4, (2.18)

3 1

.80 that

a(0) = S s x4+ u) s, (x5)dx, . (2.19)

This last expression is recognized as the crosscorrelation of

the functions s; and s3 evaluated at u. Thus, a light sensor
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placed in plane P, at the origin of the x4 axis can be used
to obtain the correlation of s; and s3 as s; is translated

parallel to the x axis.  When s; and sj are'different func-
tions, the operation corresponds to crosscorrelation. When

they are the same, autocorrelation results.

2.2 Imaging Errors Due to Geometric
Deviations

In an optical system such as that shown in Fig. 2.1, the
Fourier transform relation holds only between the various
planes Py, Py, etc. If a transparency or light sensor placed
in the processor deviates in position from one of these planes,
errors in the optical imaging and resultant processor output
occur. It is thus important to know what the effects of such
deviations are and to what extent they affect the operation
of the system as a data processor. |

In a paper concerned with the mathematical description
of the formation of optical images, J. E. Rhodes (1953) de-
scribed phase distortions resulting from defocused images
which can be readily interpreted in terms of the notation
and geometry of the optical system described in the previous
section. In Rhodes' paper the Fourier transform relation
between the complex light amplitude distributions in the two
focal planes of a lens was derived. Assume, for example,
that the derived Fourier transformation exists between the
planes Pl and P2 of Figure 2.1. Using the notation of the

previous section, the complex light amplitude distributions
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in the two planes are related by
a5 (w,) =-F[dl(xl)] . (2.20)

- where F denotes the Fourier transform operation and Wy is
related to x5, by Eq. (2.5). Rhodes described imaging errors
in plane P as the plane Pj is displaced by a distance Az
along the optic axis.

The result was
\szz

dj(wy) = F[dy(xy) e am 4%, (2.21)
where Az represents the displacement of the plane P; and A is
the wavelength of the illumination. Edquation (2.21) shows
that the imaging error corresponds to a fredquency dependent
phase delay. The Fourier transform of dl(xl) is thus dis-
torted by this factor as the plane P; is displaced from the
focal plane of the lens L,.

Vander Lugt (1967) described some effects of small dis-
placements of spatial filters on signal-to-noise ratios in
coherent optical processors. The results of this work can
be interpreted in terms of the optical processor model
presented in the previous section. With a processor con-
figuration similar to that described for frequency domain
filtering, effects of displacing the transparency in plane
P, both transversely and longitudinally along the optic (z)
axis were considered. Assuming the transparency in plane Py

to contain a signal Sl(xl) accompanied by an additive noise
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nl(xl) having uniform spectral density, the complex light
amplitude distribution corresponding to that emerging from

P, was described by

The distribution incident on plane P, was then described
by

dé(wz) = Sl(wz) + Nl(WZ)’ (2.23)

where Sl and Nl represent, respectively, the Fourier trans-
forms of s; and nj; due to the imaging of lens L,. In the
plane P, a matched filter having a complex amplitude trans-

mittance function

Si* (W2)
Ny (wa) Np*(wp) *

was assumed, where the asterisk denotes the complex conjugate

and C is a constant.

A transverse displacement of the filter by an amount

- Awy was considered. The light distribution emerging from

plane P, was described by a term corresponding to the signal

given by

d (W Aw ) = oy oy (2-25)
s2 ‘"2 2 Nl(w2+ Aw2) Nl*(w2+ sz)
and a noise term
Nq(w,) S1*(wo + Aw,)
dpp (W, bwy) = w21 272 2 : (2.26)

*(w_+
Nl(w2+ sz) Nl (w2 Aw2)
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In the plane corresponding to P53, the transforms of (2.25)
and (2.26) appear so that the light distribution there is:

described by
a3 (xq.8w,) = F7id , (wy,Aw,) ]

+ P, 5 (wy,aw,) ], (2.27)

~when the reflection about x5 = 0 is neglected. The two terms
appearing in (2.27) thus correspond to the signal and noise
components of the output of the displaced matched filter. A
signal-to-noise power ratio was then formulated from these
two components. With the assumption of a signal form which
maximizes the degradation of the performance of the filter

as it is displaced, the noise~to~signal ratio was shown to
have the form

AwoL

- psin(=57) 42
SNR (Awp) = SNRq L%_Z;EE—__]"
(—=)

2

(2.28)

where SNR, is the noise-to-signal ratio for zero displacement
and AL is the spatial extent of the signal s;. This relation
was considered as a measure of the performance of the dis-
placed filter. The function in the brackets of (2.28) is of
the sin x/x type which occurs frequently in communication
theory. The maximum value occurs for x (i.e. sz) equal to
zero, and the function is similar to a damped cosine wave,

Equation (2.28) thus demonstrates the degradation of the
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SNR as Awy increases. The effect of the lateral displacement
sz on the filter's operation is thus apparent.

Vander Lugt then considered a longitudinal displacement
of the filter Az which corresponds to the displacement of the
plane P2 of Figure 2.1 along the optic axis. He showed that
the effect of such a displacement could be described by an

equation identical to (2.28) with the effective Aw, given by

21TxO
AE2

Awy = Az (2.29)

where the wavelength A and focal length F follow the notation

of the previous section, and x. corresponds to the position

o

of the signal s; on the xy1 axis of plane Py.

2.3 Nonlinearities in Optical:
Data Processors

2.3.1 The Zero-Memory Model and Methods of Analysis
D. H. Kelly (1960) introduced a three-stage model for the
analysis of photographic imaging processes. 1In the first
stage, the light scattering properties of the emulsion are
accounted for. The scattering prevents the emulsion from
faithfully reproducing images of sharp edges or exposure
patterns where the incident intensity varies considerably
over small spatial dimensions, This effect is analogous to
the low-pass filtering of electrical signals. The first
stage of the model corresponds to image filtering of this

type. A similar filtering operation occurs during the
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development of the photographic material. The third stage
characterizes this effect. - Nonlinearities in the photo-
graphic process are accounted for in the second stage. A
pointwise nonlinear transformation is used to relate the so-
called latent image density (input to third stage) to the
effective exposure (output of first stage). The transform-
ation is termed pointwise since the latent image density at
a given point on the emulsion surface is dependent only on
the effective exposure at that point. An analogous situa-
tion occurs in the area of electrical engineering when sig-
nals are passed through nonlinear devices. If the instan-
taneous output of the device depends only on the instanta-
neous input, the nonlinearity is said to be of the zero-
memory type (Middleton, 1960). The function describing the
nonlinear transformation is termed the characteristic func-
tion, the transfer characteristic, or simply the character-
istic.

In the literature on optical data processing and
holography,methods of analyzing zero-memory nonlinearities
have followed two general approaches. In the first,
characteristic functions are represented by their Fourier
or Laplace integral transforms. These methods have been
widely used in the field of communication theory. They
-allow the determination of nonlinear effects on a wide
variety of signal or image forms and have been applied pri-

marily to the analysis of analytic models of actual nonlinear
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characteristics. The models allow gualitative understanding
of the effects of the nonlinearities that they represent and
are quite useful in theoretical studies. In the second
approach, the nonlinear characteristics, or models for them,
are analyzed directly. 1In most applications, Taylor or power
series expansions are employed which allow the nonlinear
effects to be computed for sinusoidal signals. The direct
methods have been applied to the analysis of empirically
obtained characteristics. They can be readily applied to
such characteristics and yield quantitative results with a

minimum of computational complexity.

2.3.2 Transform Methods

Davenport and Root (1958) described the use of Transform
methods for the analysis of zero-memory nonlinear character-
istics. In their description, the output of a nonlinear
device is expressed as

y = £(x) (2.30)
where x represents the input of the device and f represents
the zero-memory characteristic. The input of the device is
assumed to be a function of some other variable t so that

y(t) = £[x(t)]. (2.31)

If the function £ is sectionally smooth and

S g ax < + =, (2.32)

exists, the Fourier transform of f exists and is given by
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F(v) = S f(x)e‘?vxdx. . (2.33)

The output of the nonlinear device can then be expressed as

S F(v)ejvxdv. (2.34)

-0

1

y = £(x) = 55

For a given input, x(t), y becomes

-]
y(t) = 5%:3F(v)e3vx(t)dv. (2.35)
v -—co
This expression is used to obtain the form of y(t) from the
input function x(t).
In some cases the characteristic function f may not

meet the condition (2.32) but may satisfy

[£0)] < me¥% x> 0 (2.36)
and

[£(x)] < Mpe™V2% | x < 0 (2.37)

where-Ml, My, Uy, U, are positive constants. 1In such cases
f can be represented by a pair of unilateral Laplace trans-

forms given by

il

f,+(p)k S f(x)e PXax , (2.38)
(@)

and

S £ (x) e P¥ax, (2.39)

-0

F_(p)
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where p = u + jv. The output of the nonlinear device is then

given by
O'l+ Jj®
1
y = £(x) = EEE'[t . Fy (ple P ap
02+ joo
+‘S -F  (p)e¥P dp]‘_ (3.40)
- 0g-i® R

where o7 > Uy and 0, < U,. For a given x(t), the output is
expressed as

gqtje
1
- 1 px (t)
y(t) = 713 [ S F, (ple dp
cl—jm

Ootje
+ F_ (p)eP* (¥ gp ] . (2.41)
Og-je=
In either Eg. (2.35) or (2.41). the form of y(t) is usually
obtained by expanding the exponentials containing x(t) and
computing the inverse transform termwise.

-Kozma (1966) employed the Fourier transform method to
describe some general effects of nonlinearities encountered
in the photographic recording of spatially modulated coherent
light. He considered the recording of a one-dimensional
interference pattern created by two monochromatic wavefronts.
One of these was a reference wave having’a complex representa-

~tion .
r(x) = kelJbx | (2.42)
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where k is the amplitude of the wave, b is a constant, and
x is the spatial variable on the photographic material. The
second wavefront contained signal information that was to
be subsequently extracted from the photographic recording.

The complex amplitude of this wave was described by

s(x) = a(x)e JPX) | (2.43)

where the functions a(x) and @(x) contain the information to
be extracted. The interference pattern of these wavefronts
was shown to create a modulation of the exposure of the
recording medium given by
E(x) = ta2(x)+ 2tka(x) cos[bx + F(x)] . (2.44)

where t is the exposure time.

A zero-memory nonlinearity having functional form G
was assumed to relate the amplitude transmittance of ‘the
photographic material to its exposure. Thus the spatial

variation of the amplitude transmittance was given by
g(x) = 6[E(x)] . (2.45)

Using a Fourier transform representation for the nonlinearity
G, Kozma showed that the form of E(x) given in (2.44) results

in an expression for g(x) that can be written as
g(x) = E:Hnﬁx) cos {m[bx +.¢(x)]} - (2.46)
m=0

where the various terms of the series result from the expan-

sion of the exponential in the inverse transform. The
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similarity of the first two terms of this series to the two
terms in (2.44) is evident. An error-function-limiter model

was assumed for the nonlinearities. G was thus given by
L /2 E 2 2
G(E) = -S-/%S e Y/25% gy (2.47)
o

where L and S are constants. The introduction of this model

yielded expressions for Hg andVHl'given by

HoGo) = 2/2ea2e0] £60) (2.48)
H) (x) = (%J%)[Ztka(x)] £(x) , (2.49)
and
2 |
£(x) = e Lthka(x)/s] Io{[tka(x)/s]z} , (2.50)

where I, represents the zero-order modified Bessel function
of the first type. Thus, the first two terms of Eg. (2.46)
correspond to Eq. (2;44) except for the amplitude distortion
factor f(x). The form of this distortion factor was studied
for cases of mild and severe nonlinear distortion. For mild
distortions represented by tka(x) << S, a series expansiom

of Eq. (2.50) gave

2
H (x) = (-SI—‘,‘/—%){taz(x) - werta gz, 1 (2051

and

Hj (x) (2S—LJ%){2tka(x)— %[El‘g—(ﬁlj?-h..} . (2.52)

The leading terms in these expressions are identical to the
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terms in the exposure expression. Kozma concluded that for
mild nonlinear distortions, both the functions a(x) and g(x)
can be recovered from the photographic recording. For severe
distortions represented by tka(x) >> S, an asymptotic expan-

sion of Eg. (2.50) yielded

2 .
Holx) = ({3l Lo ald o 1 (2.53)

and : ‘
Hy () = ({1 o+ f2gkalag?, ) (2.54)

These expressions contain no terms with amplitude fluctuations
similar to those of Eg. (2.44) and amplitude information is
therefore lost. The phase function @(x), however, still
appears in the second term of Eq. (2.46). Thus Kozma con-
cluded that even with severe nonlinearities in photogfaphic
processes, phase information in a recorded signal of the
form of (2.43) can be recovered. These results demonstrate
that spatial filters for use in optical data processors can
be feagibly made by photographically recording interference
patterns of reference and signal waves as given by (2.42)
and (2.43).

Friesem and Zelenka (1967) used the Laplace transform
method to describe the effects of photographic nonlinearities
in holography. They assumed exposure of the photographic
material to a monochrdmatic reference beam with complex
representation

r(x) = Apelfr®) | (2.55)
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where A, is a constant and er(x) is a linear function of x,
and a signal beam given by
j6q (x
e.J 1. ( )+

ejez(x)

s(x) = A , (2.56)

B

1

where A,, A2 are constants such that A1 >> A2 and.el(x),ez(x)
are linear functions of x. A signal beam of the form Eg. (2.56)
occurs when the "scene" of the hologram contains two point
sources of different intensities. The resulting amplitude

transmittance of the hologram was described by
vix) = glu(x)] , (2.57)

where g represents the nonlinear characteristic of the photo-
graphic process, and u(x) represents the modulation of the
exposure resulting from the interference of Egs. (2.55) and
(2.56). The form of v(x) was obtained by the Laplace trans-

form method and assuming g to be an odd power~law function

of the form

g(u) = uly ¥t | (2.58)
where v > 0. The resulting amplitude transmittance function
was shown to have terms which yield an output image corre-
sponding to an array of point sources. Two of the point
sources correspond to the reconstruction of the images of the
object points, and the others correspond to false images.

For severe nonlinearities, the false images of the stronger
source are of intensity comparable to that of the recon-
structed weak source. Experimental results included in the

paper demonstrated the occurrence of the false images.
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2.3.3 Direct Methods

In the area of optical data processing, direct methods
of analyzing zero-memory characteristics have been applied
in two ways. In the first, nonlinearities in photographic
processes have been modeled by so-called gamma-law char-
acteristics. That is, the intensity transmittance of a
transparency is assumed. to be related to its exposure by an

equation of the form

T = KE ', (2.59)

where T represents the intensity transmittance, E the expo-
sure, and K and y are constants. ' This relation assumes the
nonlinear characteristic to be representable by a power-law
curve. - With the exposure given as a sinusoidal function of
a spatial variable, a power series expansion of the term

E™Y is used to obtain an approximate expression for the
resultant spatial variation of the intensity transmittance.
.Direct methods have also been applied to photographic hon—
linearities without the assumption of gamma-law models. ' The
"functional relation between the intensity transmittance and
exposure of a transparency is represented by a polynomial
approximation. The polynomial representation is used to
express the spatial variation of the intensity transmittance
when a sinusoidal exposure pattern is assumed.

| In a paper concerned with the application of sine-wave

response techniques to photographic processes, R. L. Lamberts
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(1961) employed the gamma-law model. Nonlinearities in photo-
graphic processes were described by an equation of the form

of (2.59(. An exposure of the form
E(x) = 1l-A cos x , (2.60)

was assumed where A is a constant less than one. The result-

ant intensity transmittance was described by
T(x) = K(1-A cos x)7V . (2.61)

A binomial expansion of the factor (1-A cos x)"'Y was used to

give an expression of the form

T(x) = K[1 + ({)Acos % +(¥)A?coszx + ...7, (2.62)

where the parentheses represent binomial coefficients. By
expanding the powers of the cosine function, this expression

becomes

T(x) = K[ Qy + Q) cos x + Q, cos (2x) + oowl o (2.63)

where the Q coefficients are obtained from the parameters A
and y. - Lamberts presented a table giving the Q coefficients
of orders zero through eight for values of A ranging from

0.1 to 0.7 and gammas between 0.5 amd 2.0. The Q coefficients
of second and higher orders gave the amplitudes of the har-
monic distortions of the sinusoidal exposure based on the
gamma-law model. Lamberts' paper did not contain experi-

mental results directly related to the Q coefficients.
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R. E. Little (1966) employed the gamma-law model in a
paper concerned with the suppression of harmonic distortion
in photographic images. The resultant intensity transmit-
tance of a negative-positive photographic process was

related to the exposure by

where K is a constant and Yy and Yo represent respectively,
the gammas of the negative and positive photographic mate-
rials. Following a development similar to Lamberts'. Little

showed that an exposure of the form
E(x) = a + b sin x , (2.65)

where a and b are constants such that a > b, leads to a
resultant intensity transmittance given by
T(x) = a1l + Bgsinx + & cos 2x + ceel (2.66)
A A

where the constants A, B, and C can be evaluated in terms of
the parameters K, a, b, Yy and Yor Little computed the

values of the fundamental and second harmonic coefficients

in (2.66) for a range of values of the parameters. He com-
pared the calculated fundamental amplitudes to those result-
ing from experiment. The comparison showed that for relatively
high levels of average exposure, results from the gamma-law
model were fairly accurate. For#lower average exposure levels,

the fundamental amplitudes obtained from the gamma-law model



26

differed from those obtained experimentally by considerable
amounts (10 to 75%).

D. C. Espley (1933) described a method of calculating
the effects of zero-memory nonlinearities on sinusoidal
signals that is based on polynomial approximations. It has
been subsequently employed in the area of optical data proc-
essing. In a paper concerned with the determination of
harmonic distortions produced by vacuum tubes, Espley
represented the plate-current grid-voltage characteristic of
a tube by a polynomial approximation. The approximation was
obtained from the functional values of the characteristic at
a set of equally spaced values of grid voltage. A typical

polynomial is given by
i =a. + a eg + ... +a _eB 1l | (2.67)

where ip represents the plate current, eq the grid voltage,
and the a coefficients are constants. Values for the a
coefficients were obtained from the solution of the set of
n simultaneous equations resulting from the evaluation of

Eg. (2.67) at the n equally spaced values of e By assuming

g*
a grid-voltage signal

ey = K sin{wt) , (2.68)

where K is an amplitude constant, ,w is the radian frequency

of the signal, and t is time; Equation (2.67) becomes

ip(t) = by + bysin(wt) + ... + bn_lsin[ (n-1)wt] , (2.69)
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where the b coefficients are given explicitly in terms of
the a coefficients and K. The b coefficients of second and
higher orders thus correspond to harmonic distortions.
Espley derived equations giving these directly in terms of
the n equally spaced functional values of the characteristic
and the constant K. Versions of this method are described
in a number of recent books on elementary electronic circuit
theory (Ryder, 1964 and Chirlian, 1965).

J. S. Wilczynski (1961) employed Espley's method for
the determination of harmonic distortions resulting from the
exposure of photographic plates to sinusoidal intensity
patterns. By expdsing a number of plateé to patterns of the
form

E(x) =a + b sin (w.x), (2.70)

where a, b, and w, are constants (a > b), Wilczynski compared
the resultant variation of the opacity of the plates to that
computed by applying Espley's method to the measured opacity-
exposure characteristic curves. By fitting fourth and sixth
order polynomials to the characteristic curves, the funda-
mental and harmonic amplitudes of orders two through four
were obtained. The results agreed well in the experiment

for a wide range of exposure conditions of the plates.
However, in instances when high contrast sinusoidal patterns
were recorded, higher order harmonics showed some variation

from the calculated values. Wilczynski ascribed these
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differences to a development effect which was not accounted
for in his measurement of the opacity~eprsure characteristics.
In recent studies, F. J. Tischeri/ indicated that the
representation of a nonlinear characteristic by Tchebyscheff
polynomials can lead to simplification of the computational
procedures with which the harmonic distortions of sinusoidal
signals are obtained. By properly expanding a given charac-
teristic into a series of Tchebyscheff polynomials, the
amplitude of each harmonic of a distorted signal was shown
to be equal to the expansion coefficient of corresponding
order. This is in contrast to the Taylor series expansion
where the amplitude of each harmonic is given by an infinite

series of the expansion coefficients.

L/ F. J. Tischer. September 15, 1967. Interim Progress
Report, National Aeronautics and Space Administration Grant
NGR 34-002-038/S2, Department of Electrical Engineering, North
Carolina State University, Raleigh, North Carolina.
(Unpublished)
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3. IMAGING ERRORS DUE TO GEOMETRIC DEVIATIONS .

3.1 Introduction

In coherent optical data processors, signals are recorded
on sigﬁal carriers such as photographic transparencies, photo-
chromic glasses, or other media capable of light modulation.

A beam of cgherent light passes through the signal carrier

surface and the data processing is accomplished optically.

If the geometry of the signal carrier surface deviates by a

small amount from that which is optimum, distortions result

in the optical imaging within the processor. These distor-

tions, in turn, cause signal distortions to appear in the

processor output. Geometric deviations of signal carrier sur-
\

faces can be caused by imperfections in the shape of the sur-

faces or by alignment errors in the optical system.

In this chapter, imaging distortions for several types
of geometric deviations are derived. These deviatiohs model
those that can occur in actual processors. The distortions
are interpreted in terms of the Fourier transforms of the
sighals recbrded on the signal carrier surfaces and are shown
to correspond to attenuation, frequency shifts, and phase
errors in electronic systems. The Kirchhoff integral solution
of the scalar wave equation is used to derive quantitative -
relations between the distortions and the parameters describ-
ing the deviations of the signal carrier surface geometry.

Figure 3.1 .introduces a portion of a typical coherent -

processor model. The three planes shown are transverse to
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Figure 3.1 Model of a portion of a typical optical
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the z axis and coherent light is assumed to be propagating in
the positive direction along this axis. The object and fre-
quency planes coincide with the two focal planes of the lens.
A one~dimensional signal is assumed to be introduced to the
processor on a signal carrier surface that ideally coincides
with the object plane. The signal is assumed to have negli-
gible width and is recorded as a function of a spatial vari-
able x' as shown in the figure. The remainder of the signal
carrier surface is assumed to be opaque. The signal is
represented by the amplitude transmittance function t(x').

Figures 3.2 through 3.4 introduce the geometric devia=-
tions of the signal carrier surface that are considered. In
Figure 3.2, the signal carrier surface is a plane which is
tilted with respect to the object plane. This geometry can
be used to model alignment errors in actual processors. In
Figures 3.3 and 3.4, the signal carrier surface corresponds
to cylindrical and spherical sections. This geometry models
signal carrier surfaces having slight warps and bends. Such
surfaces occur since manufacturing tolerances limit the
attainable flatness of actual signal carriers.

The results of this chapter can be used in at least two
types of applications. . If alignment errors and other geo-
metric deviations are known for a given processor, the result-
ing attenuation, frequency shifts and phase errors in the
processor output can be estimated. Conversely, if the allow-

able data processing errors are specified for a system that
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Figure 3.2 Signal carrier surface as a tilted plane
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Figure 3.3 Signal carrier surface as a circular cylinder

Figure 3.4 Signal carrier surface as a sphere tangent to
~origin of object plane
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is being designed, tolerances can be set on the alignment and
flatness of signal carriers within the system.

Parallel displacements of the signal carrier surface from
the object plane are not considered here. The paper by Rhodes
(1953) which is summarized in the literature review essentially

covers this case.

3.2 Application of the Kirchhoff Integral
to the Optical Processor Model

Figure 3.5 introduces the model of the lens that is used
in the following calculations. The assumed imaging properties
of the lens are:

(L) All rays entering the lens at an angle @ with
respect to the optic axis (see Figure 3.2) are
imaged into the same point of the u axis;

(2) The optical path lengths of all rays entering
the lens at angle @ are equal when measured from
any line drawn perpendicular to their direction
of propagation to the point of focus on the u
axis (in the figure, ry = ARC = DEC = FGC);

(3) The apertufe of the lens is large enough so
that all rays exiting from the object plane
at angle a pass through it;

(4) All light impinging on the lens is assumed to
be transmitted (no reflections).

These assumptions are essentially those used by Born and

Wolf (1965) in the description. of Fraunhofer diffraction with
a "well corrected lens." Using this model for the lens, the
complex light amplitude 1(u) in the frequency plane can be
calculated from the knowledge of the complex light amplitude
1(x') on the right hand signal carrier surface (x' is taken

as the spatial variable along this surface).



Figure 3.5

Imaging properties of the lens
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The calculation of 1(u) from 1(x') is accomplished by
means of the Kirchhoff integral. (Tischer, 1965). With the
assumption that the incident light amplitude is uniform :
across the width of the recorded signal, the Kirchhoff inte-

gral can be written as (see Figure 3.6):

L(u) = S {——Ui‘—l - L) sy + 35T | cos 6}

rix')

—J——r (x )
e

r(x ) dx ' , (301)

where é%-is a directional derivative taken normal to the

signal carrier surface (as défined.in Figure 3.60),

r(x')‘is the ray path length from a point x' on the
transparency surface to the image point on u,

@ = g+ @ is the angle between the normal to the
signal carrier surface and the ray path under
consideration,

A is the wavelendgth of the light employed,

-a and a are the aperture limits of the processor,

b is the width of the signal, and

- s (3.2)

Several simplifying approximations may be made in cal-
culations of Eg. (3.1l). These approximations are extensively
used in the literature on optical imaging (Rhodes, 1953) and

are as follows. In any practical imaging system (processor)

21
r(x') <<‘.T . (3.3)
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thus

| [r(g;') + J%‘]NJ%E . (3.4)

Since r(x') varies only by a small amount, the r(x') appear-—
ing in the denominator of the integrand is replaced by some
nominal value Yo (shown in Figure 3.5). Equation (3.1l) thus

becomes

b [allx') _ 2 -340r (x*)
lgu) = amr S-[ ?n - er-l(x') cos 6] e A ax'. (3.5)
-a

This expressién may be further simplified by writing 1l(x') and
QéﬁéLL in terms of: the incident light wavefront,;. the ampli-
tude transmittance function t(x'), and the geometry of the
signal carrier surface. Assuming a plane, monochromatic wave-
front of amplitude‘LO propagating in the positive z direction,

the complex light amplitude to the left of the signal carrier

surface is

=J
lO(X,Z) = Lb e I (3°6)

[ ]
>1j
N

where the complex exponential represents the phase variation
of the wavefront with z. The geometry of the signal carrier
surface can be characterized, as shown in Figure 3.7, by

z = Zl(x')° ) (3.7)

Thus, the complex light amplitude incident on the trans-

parency surface can be written as



]
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- r(x)
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Figure 3.6 Application of the Kirchhoff integral
to the processor model
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"x')

Figure 3.7 Parameters describing the signal
carrier surface
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' -J%F z' (x')
lo(x ) = L, © . (3.8)
Multiplying this expression by the transmittance function of

the carrier surface t(x') yields

_a2M, 1 1
Lix') = Lot(x) e Th° &) (3.9)

which is the cqmplex light amplitude on the right-hand surface
of the signal carrier.

The tert é‘—]:-é}ﬁl)—inEq. (3.5) can be evaluated as in the
calculation of radiation from surface wave antennas (Tischer,
1965). If the transmittance function t(x') does not vary
appreciably_within lengths of the order of X;/, the complex
light amplitude immediately to the right of a small region of

the'transparency surface can be written

.21
-j5- 2
L(x,z) = Lot(x)) e A", (3.10)

where t(xé) is the transmittance of the transparency near the

region. - From the geometry of Figure 3.6,

Al(x') _ 3l(x') 3z , 3l(x') 3x
dn dz dn * % on * (3.11)
This can be written as
dl(x') = 31(x') cos g + 31(x') gin g. (3.12)
an 9z X

;/This assumption restricts the spatial frequency spec-
trum of t(x') to frequencies of several hundred lines per
millimeter and less.
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Substitution of Eg. (3.10) in Eg. (3.12) gives

' 121 ' 1
iif—r(lﬁ?l: (-j -)\2-1-‘ L, t(xd) cos g e T2 (x°), - (3.13)

so that for an arbitrary x',

2T
. . , -5 z' (x')
é%éz—) = ('J%;;‘cos g Ly t(x') e ) = . (3.14)

Equations (3.9) and (3.14) can be substituted into Eg. (3.5)

to give

-8 2 (x)+r (x") ]

b
1{u) = —'EQ— S t(x') (cosf + cosf)e dx'. (3.15)

2ro
-a

In the derivations which follow, trigonometric functions
of the angle & occur frequently. Since in any practical pro-
cessor o is limited to small values, the following approxi-

mations are made (see Figure 3.5).

u a.
sin a = 7;5:;27% P E‘=tan e, (3.16)
2
- £ "
cos o = (f2+u2)% ~ (1 2f2), (3.17)
243215 2
(cos @)~ 1 = -f-‘f—?—li = (1 + -2-};—2—), (3.18)

These approximations represent the first several terms of the
series expansions of the trigonometric functions., - The approx-
imations are computed in terms of u and f which correspond to

physical lengths in the processor.
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The value of r, appearing in Eg. (3.15) can be calcu-
lated with the help of Figure 3.5. Inspection of the figure
shows

ro = (cos a)f + (cos @)_lf. (3.19)

Use of Egs. (3.17) and (3.18) gives

U.2 U.2

r.o = £f(1 - —=) + £(1 + =—=), (3.20)
2f£2 2£2

oxr

ro = 2£. - (3.21)

Use of Eg. (3.21) allows r(x') to be written as

r(x'). Ty - Ar(x'), (3.22)

or

i

r(x') 2f - Ar(x')., (3.23)

where Ar(x') is defined as shown in Figure 3.8. . Introduction

of Egs. (3.21) and (3.23) in Egq. (3.15) yields

_i8e  Lob A
1(u) = (-je J“xf) Z%— t(x')[cos 6 + cos @]

=a

2T ok ey .
ISz (') - ar(x) ]y . (3.24)

_.411',
Since the phase shift (-je JTFf) is constant over the image

plane; it may be neglected so that

a
L b _'21T[ i L N 1
L(u) = Z%—'S t(x') (cosg+cosf)e 5Lz (x')-Ar(x )]dx'

-a

. (3.25)

This equation can be applied to the "ideal" processor where



Figure 3.8 Geometry for the calculation of
r'(x)
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the transparency surface is coincident with the object plane

(xy-plane). Inspection of Figure 3.9 shows that for this

case;
x' = x, (3.26)
z' =0, (3.27)
Ar = x sin a (3.28)
and
g = 0. (3.29)

Using Eqg. (3.16), Eg. (3.28) becomes

xXu

Ar = == . (3.30)

Substitution of Egs. (3.26), (3.27), (3.29) and (3.30) into

Eg. (3.25) yields

a 121
1(u) = %%E S.t(x)(cos a + l)eJXE dx. (3.31)
-a

Equation (3.31) thus describes the imaging in the frequency
plane of the processor (uv-plane). If the factor cos @ in

Eqg. (3.31l) is assumed to be unity, the equation becomes

a . (21
1(u) = -g—‘f’lo-g t(x)e’ (Tf)uxdx, (3.32)

-a
which is in the form of a Fourier transformation. By defining

2T

ST ey = (3.33)

where £, represents a spatial frequency and Wy the correspond-

ing radian frequency, Eq. (3.32) becomes
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Figure 3.9 Geometry for signal carrier surface
coincident with object plane

Ny
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o . a
. . P L b . .
1(u) = 5—%—8 t(x) el ¥ax. (3.34)
-a

Equation (3.32) thus represents the desired or ideal imaging
relation between the object and frequency planes of the pro-
cessor. 1In actual processors this relation holds as an approx-
imation since & is a small angle. Since this development is
concerned only with the imaging errors due to the geometric
deviations of the signal carrier surface from the object

plane, the factor cos 6 in Egq. (3.25) is replaced by cos g.

The equation thus becomes

—127 ' ' _ '
sz (x") - Ar(x )]dx‘

Lb oo
1(u) = 5%—-8 t(x') cos g e . (3.35)

-a
By evaluating Eq. (3.35) in terms of the geometry of the

signal carrier surface and comparing the results to Eq. (3.32),
the imaging errors introduced by the geometry become apparent.

In the following sections, this process is carried out.

3.3 The Signal Carrier Surface
as a Tilted Plane

3.3.1 Axis of Tilt Normal to Direction of Processing

When the signal carrier surface consists of a plane which
is inclined at some angle y with respect to the x axis, the
geometry corresponds to that of Figures. 3.2a and 3.10. In -
this case, the angle @ is equal to y and does not vary with

x'. Thus

cos @ = cos y . ' (3.36)
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Y z

-
"

Figure 3.10 Signal carrier surface tilted with
respect to x axis
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By inspection of Figure 3.10,.

z'(x') = x' sin vy, (3.37)
and
Ar(x') = x' sin(y + a). (3.38)

By expanding the sine function,

Ar(x') = x'(sin.y cos @ + sin a cos vy). (3.39)

Using the approximations of Egs. (3.16) and (3.17),

2
1 - i : - u ) u
Ar(x"') x'[sin y (1 EEEJ + ?.cos,y], (3.40)
and
' 2
' 1 - ' = N | u : . .
z'(x') Ar{x') = x'( g-cos y + 557 sin y). (3.41)

Substitution of Egs. (3.36) amd (3.41l) in Egq. (3.35) yields

1.2
L,b cosy 2 jgﬂlx'ucos y - X% sin vy)
S | tlx)e s 2t ax'. (3.42)

-a

1(u) =

Comparison of this expression to Eg. (3.32) pbinté up the
following effects in the imaging bf.the tilted surface; (1)
the amplitude of 1l(u) is reduced by the factor cos y, (2) the

spatial frequency variable (u or fx) is scaled by the factor
1.2
cos y, and (3) an additional phase term (-jﬂfzg—

introduced into the exponential. Effects (1) and (2) can be

sin vy) is

insignificant if ¥ is a small angle since, then

" _
cos (y) ~ 1 - 3%— , (3.43)

and the angle enters as a second order effect. Effect (3)

consists of a phase distortion of the complex light amplitude
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in the uv-plane. If this distortion is to be held to within
p radians,

' 2
o > X max Wmax gip y (3.44)
- AE£2

Inspection of Figure 3.10 shows

! = a. (3.45)

X max

The quantity upzy corresponds to the maximum spatial fre-

quency (£ ) appearing in the uv-plane. Equation (3.44)

X max

can thus be written as

sin y < . (3.46)

maf2
X max

The inequality is thus expressed in terms of the aperture
length of the processor, the wavelength of the light employed,
and the maximum spatial frequency to be processed. - Equation
(3.46) expresses the maximum allowable tilt of the object
plane (about an axis normal to the direction of processing)

in terms of the maximum allowable phase distortion in the
frequency plane. Similar equations can be derived for effec?s

(1) and (2). -As an example, application of Eq. (3.46) to a

processor where

a = 15 mnm., (3.47)
o

. A = 6328 A, - (3.48)

fy max = 100 lines/mn., (3.49)

and

p = m/4 (3.50)
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yields
sin .y < 0.0026 (3.51)
or

y < 0.15° . (3.52)

3.3.2 Axis of Tilt Parallel to Direction of Processing

If the sighal carrier surface is a plane inclined at
angle.- y with respect to the y axis of the processor, the
geometry can be represented by Figures 3.2b and 3.1ll. Because
of the tilt,

cos # = cos y . (3.53)
If the x' axis is displaced from the z axis by an amount y'
(y' is the spatial variable normal to x' in the tilted plane),
then by anology to Eq. (3.37) and Figure 3.10,

z' = y' sin y. (3.54)
From inspection of Figure 3.11,

Z

Ar{x') = (x sin a + <o &). (3.55)
Since
x =x' - z' tan a, (3.56)
Eg. (3.55) becomes
- 1 (sin’a 1
Ar(x') = x' sina - 2 ( - , , (3.57)
-\cos @ cos

or

Ar(x') = x' sin @ + z' cos a. (3.58)

-Using the approximations of Egs. (3.16) and (3.17).in
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Figure 3.11 Signal carrier surface tilted with
respect to y axis
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Eqg. (3.58) gives

w2
Ar(x') = x!' E-+ z' (1 - ——30, ; (3.59)
2f
or
: 2
Ar(x') = 22 - y' gin y(1 - 2. - (3.60)
£ Y £ 2

Substitution of Egs. (3.53), (3.55) and (3.60) into Eq. (3.35)

yields

1(u) =

b 21T
- T S eI TEE L"’sm V. (3.61)

-a

- This shows that when the axis of tilt is parallel to the

direction of processing, the only freqguency-dependent effect
is a phase distortion which increases as the off axis dis-
tance of the function being processed increases.

Comparison of Eq. (3.61l) with Egq. (3.32) shows that the
tilt introduces: (1) an amplitude reduction of 1l(u) given by
cos y, and (2) a frequency dependent phase distortion given
by exp (—jg%zé%% sin,y).z/ If the phase distortion is to be

kept within p radians,

> ny ' uzmax

p > X Y max oy, 4 (3.62)
A £2
or
sin y < 92 ) (3.63)
TT)\Y fX max

2/As in the previous case, effect (1) can be insignificant
since for small tilts y enters as a second order effect.



51

This last expression limits the maximum allowable tilt (about
the y axis of the processor) in terms of the maximum allowable
phase distortion in the frequency plane.

3.4 The Signal Carrier Surface
as_a Cylinder

3.4.1 Axis of Cylinder Normal to Direction of Processing

Figures 3.3a and 3.12 show the geometry existing in the
processor if the signal carrier surface forms a circular
cylinder of radius R tangent to the y axis. Inspection of

Figure 3.12 shows

cos @ = cos %7 . (3.64)

z'{x') = R(l-cos %%Q, (3.65)
and

- : z'

Ar(x') (x7 sin a + Sos a)’ (3.66)
Also,

o - sin # = sin x' (3.67)

'R R ' )
or

Xo = R sin %; . (3.68)
and

X1 = Xo - 2z'tan a. (3.69)
Thus,

Ar(x') = R[sin%; sin a + (l—cos%%) cos a]. (3.70)
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X' u

M |

Figure 3.12 Cylindrical signal carrier surface
tangent to y axis
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Using the approximations of Egs. (3.16) and (3.17),
' 2 1
") = R[Y gin X + (1 - & 1- ~Z1. 3.71
Ar(x"') RLE 5 ( 5;20( cos R )] (3.71)

Substitutions of Egs. (3.64), (3.65) and (3.71) into Eg. (3.35)

yields
LO
L(u) = t(x ) cos(
jg.TlR[E sin .->S-|— ...-Ll—z-—- (l_cos.—?—{.'—)]
e’ A -f R 2£2 R ax' . (3.72)

Comparison of Eq. (3.72) with Eg. (3.32) shows that the
cylindrical surface introduces the following distortions; (1)
a signal attenuation dependent on x' (cos %%J; (2) a fre-
quency scaling factor dependent on x' (R sin %%J; {3) an

additional phase term in the complex exponential given by

2 ) ,
ﬁﬁgz(l—cos %{0]. For small deviations of the geometry from

plane~-form, x'<R. Thus,

1 2
cos ¥ o 1 - X > (3.73)
R 2R
sin»%%-m %% , (3.74)

and Eq. (3.72) can be written as

: ; 12,2
a 2T (x'u x'“u
Lob %2 -
1(u) = 5%— S t(x') (1- ¥ =—)e 5 A a0 £ ARE? dx' . (3.75)
2R

-a
In this case the distortion (2) is negligable and (1) corres-

ponds to a second order effect. If the phase distortion in
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the frequency plane is to be limited to p radians, then

' 2 2
mx u
2R\ £
or
22
R > mazf X max (3.77)
) ;

(with the notation used previously).
This expression can be used to determine the minimum -
radius of the cylindexr if A, p, a, and fx max 2re given. - For

example, if

A = 6328 g, (3.78)

a = 15 mm., (3.79)

fx max = 100 lines/mm., (3.80)
and

p = m/4, (3.81)
then

R > 2.85 m, (3.82)

yields the desired level of phase distortion.

3.4.2. Axis of Cvlinder Parallel to Direction of Processing

When the signal carrier surface forms a cylinder of radius
R tangent to the x axis, the geometry corresponds to that of

Figures 3.3b and 3.13. By analogy to Figure 3.12 and Eq. (3.65),

z' = R(1- cos%;). (3.83)

inspection of Figure 3.13 shows,
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R

Figure 3.13 Projection of cylindrical signal
carrier surface (tangent to x axis)
onto xz-plane

~NY
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cos @ = cos %L . (3.84)

and

Ar = (x sin @ + —2). (3.85)
cos @

As in Eq. (3.56),
x =x' - z'(tan a), (3.86)

so that °

Ar = (x'

sin a + z' cos a). (3.87)
Application of Eg. (3.83) and the approximations of Egs.

(3.16)and (3.17) yields

Ar = [—E—-+ (1 —-——7) R(1 - cos Y—J] (3.88)

Substitution of Egs. (3.83), (3.84), and (3.88) into Eqg. (3.35)

gives

' a
Lob cos %— 3
1(u) = 5F S.t(x')e

—a

u? R(1- 1—)]
sy COSR 3x1.(3.89)

Comparison of this equation with Eq. (3.32) shows that the
imaging distortions are: (1) an amplitude attenuation cos %*
and (2) an additional phase term in the exponential. For

small deviations of the geometry from planer form, y' < R.

- Thus

' 12
¥

cos ~ (1 - ), 3.90
R %Ez ( )

and Eg. (3.89) can be written as

' 2,12
Lob cosx- 20 (X4 YUY

1(u) = —————————-S t(x' )eJ 2 s 4Rf2)dx.
-a

(3.91)

3
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Requiring the phase distortion to be limited to p radians

gives 5 5
S Ta y'
> max 3.92
P = 2\REZ (3.92)
or
Ay ' 2£2
R > T X ax (3.93)

Thus, the minimum radius of the cylinder can be determined
from: the wavelength of the light, the off axis distance of

the signal (y'), the maximum frequency to be processed and

the maximum allowable phase distortion.

3.5 The Signal Carrier Surface
as a Sphere

If the signal carrier surface is a sphere of radius R,
tangent to the origin-of the object plane, the geometry can

be represented as shown in Figures 3.4 and 3.14 through 3.16.

The x' axis corresponds to the intersection of a plane parallel

to the xz-plane with the sphere. Although the angle g lies
neither in the xz=- nor thé yz-plane, application of the law
of cosines to the angles y and A of Figure 3.15 and 3.16
yields

cos @ = cos y cos 4, (3.94)
or

= X' ¥l .
cos @ cos (R.) cos (RO). (3.95)

By inspection of Figure 3.16

R = Ro cos X = Ry cOsS (%L), . (3.96)
o



Figure 3.14

Spherical signal carrier surface

~nY

58



f

Figure 3.15 Projection of spherical surface into

xz-plane

Ny

Figure 3.16 Projection of spherical surface onto

yz-plane

59
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so that

cos # = cos [—F —+ ] cos (L1). (3.97)

ROCOS(%SJ] )

Inspection of Figure 3.1l5 shows

z' = Ro - R cos (2.;.{'_), | (3.98)

Ar = o+ x1 sin a , (3.99)

cos a

X] = Xo - 2' tan a, (3.100)

and
- . x' '

X5 = R 51n.(?;). (3.101)
Thus,

z'(x') = Rg [1- cos(%g) cos (%—)] (3.102)
and

Ar(x') = [R sin(%%& sin & + z'(x')cos a]. (3.103)

Introduction of the approximations of Egs. (3.16) and
(3.17) into Eg. (3.103) and subtraction of the result from

Eq. (3.102) yields

_{ R %- sin(%%) - RO[l—cos(%i) cos(%lJ]§§§}~ (3.104)

With" the assumptions x' < R and y' < R,, the approximations

. )
s(E) = (1 - £-), (3.105)
CO R oR
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1 l2
Yy = -

cos(RO) = (1 2R02)' (3.106)

in(XL) = x. | 3.107
s1n(R ) = ( )

and

AR R A

51n(RO) Ry (3.108)

can be made. Application of these to Egs. (3.95), (3.96) and

(3.104) yields, respectively,

cos g =1[1 —-(Z;ZZ z;g)] , (3.109)
(6]
R = R(1 - Eﬁ%%), (3.110)
O
and
2i(x') - Ar(x') = - [E 4 B2Ro (y'2 4 x'2y0 (3 933

£ 2£2  2Ry2 2R
when higher order terms are neglected. Substitution of
Egs.(3.109) and (3.111) into Eg. (3.35) and comparison with
Eg. (3.32) shows that the spherical geometry introduces the
following distortions into the frequency plane image: (1) an
amplitude attenuation given by cos @, and (2) a frequency-

dependent phase distortion given by

TTU.ZRO ( y‘2 X'z

. + .
AE2  2R,2 2r2) ]

exp [

The expressions for the amplitude and phase distortion

can be further simplified by use of Eg. (3.110). Substitution
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of this expression into Egs. (3.109) and (3.11ll) yields

- (x'2 + y'2)
cos g =[1--% 2R 1. (3.112)
and
2'(x') - Ar(x') = - (X0 4 w2(x'Z + y'2)y (3.113)
£ 4£2R,

after expansion and neglection of higher order terms. In
these expressions, the only variables describing the geometry
of the signal carrier surface are x', y', and Rg. As in the
previous derivations, limits can now be set on the geometry
in terms of the allowable distortions. The phase distortion

(2) is now given by the factor

2 1 2 2
Tu® (x + yv'<)
T

If this distortion is required to be less than p radians,

2 ' 2 12
p > Ml " v D) (3.114)
20 E£%R,

Introduction of the spatial frequency fX and the aperture a,

allows Eq. (3.114) to be written as

2 ' 2
>,ﬁk(a + v 2y ¢ % max
O - 2p °

(3.115)

As in the previous derivations, the minimum radius of the
sphere can be determined from the wavelength of the light em-
ployed, the maximum spatial frequency being processed, the off
axis distance of the .signal being processed, the aperture of

the processor, and the maximum allowable phase error.



63

4. NONLINEARITIES IN OPTICAL DATA PROCESSORS

4.1 Introduction

When available signals are transformed into the forms
required by optical data processors, nonlinearities are
usually encountered. Nonlinear transfer characteristics
occur in photographic processes as well as in electro-optic
signal conversion devices such as: photocells, photomulti-
pliers, photodiodes, cathode ray tubes, kinescopes, and
retardation-type modulators based on the Kerr and Pockels
" effects. The nonlinearities in these signal conversion
devices and methods can be described by so-called zero-
memory characteristics. That is, within reasonable signal
bandwidths, the nonlinear distortions can be considered as
frequency independent and can be described by instagtaneous
(i.e., zero-memory) nonlinear input-output relations called
characteristic functions. The application of zero-memory
nonlinear models to photographic processes was described in
the literature review. In communication theory, these models
have been used to represent the operation of devices such as:
biased diode modulators, square—law detectors, saturable
amplifiers, and half-wave rectifiers (Middleton, 1960).

The two approaches described in the literature review
have been used for the analysis of zero-memory nonlinear
characteristics. - The transform methods allow the assumption

of fairly general types of signals but can be tractably
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applied only to characteristics having rather simple func-
tional forms. Many characteristics encountered in the use
of optical data processors do not have such simple forms,
and these methods are thus inappropriate for general analy-
sis purposes. The sinusoidal signal approaches allow the
analysis of a wide class of characteristics. The papers
summarized in the review have established the usefullness
of this type of analysis in optical data processing appli-
cations, but the accuracy of the results obtained has’been
limited.

This chapter and those following are concerned with the
development énd application of accurate methods of analyzing
zero-memory characteristics using the sinusoidal signal
approach. The methods of analysis which are developed are
not limited to optical data processing applications. - They
can be used for investigations in other areas where compon-
ents having nonlinear characteristics are encountered.

- In this chapter, the effects of zero-memory nonlinearities
on sinusoidal signals are described in a general manner. The
nonlinearities are shown to create harmonic distortions of the
signals; and an equivalent noise-to-signal ratio, which
describes the severity of the distortions as a single quan-
tity, is introduced.

- In Chapter 5, the effects of nonlinearities on the
operation of a typical optical data processor are described.

Specific examples demonstrate the resulting degraded
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performance. Methods of analyzing nonlinear characteristics
and determining the harmonic coefficients of distorted sig-
nals are developed in Chapter 6. Taylor, Fourier, Legendre,
and Tchebyscheff expansions are shown to be suitable for

this purpose. The Tchebyscheff method is seen to have con-
siderable advantages in simplicity of application. Chapters
7 and 8 deal with the application of the Tchebyscheff method
to actual nonlinear problems. A numerical method for obtain-
ing Tchebyscheff coefficients is developed and subsequently

implemented in a Fortran program.

4.2 Effects of Nonlinearities on Sinusoidal Signals

The amplitude behavior of a (zero-memory) device having
a nonlinear functional relation between its input and output
variables may be represented in terms of a characteristic
curve such as that shown in Fig. 4.1. The curve relates the
output variable y to the input variable x and is a graph of

the transfer function
y = £(x). (4.1)
If the input variable consists of a signal varying about

some value Xg called the operating point of the device,

. then

S1(t) = x - xg . (4.2)

where Sj(t) represents the input signal which is a function
of some other variable t. 1In general, the operating point

of the device may be chosen anywhere on the characteristic.
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y = £(x)

S, (t)

Figure 4.1 Effects of a nonlinear characteristic on

a sinusoid
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The form of the output signal thus depends on the location
of the operating point as well as the input signal. :The

output can then be represented by

Szfsl(t),xo] =Yy - yO ’ (4.3)

where S, represents the output signal, and y, corresponds to
the output of the device at the operating point. Substitu-
tion of Eqgs. (4.1) and (4.2) into the right hand side of

Eq. (4.3) yields

s,081(8).x,] = £[8, () + x,] - ¥, - (4.4)
If s3(t) is an arbitrary sinusoidal signal given by

Sl(t) = A cos(wt + g) , (4.5)

where A is the amplitude of the signal, w is its radian
frequency, and @ is its phase at t = 0, Eq. (4.4) may be
written

s, (t,A,x ) = f[A cos(wt + g) + xo] - Yy (4.6)

where the dependence of S; on w and @ is understood. The
functional form of S, then depends on both the operating
point and the amplitude of the sinusoidal input. - Equation

(4.6) shows that

Syt + 2%, A, x) = S5(t, B, %) (4.7)

The function S,, thus, is periodic in t with fundamental

radian frequency w. If the function £ is continuous, S,
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can be expressed by a convergent Fourier series in t. The

series can be written as

bo (A, o
So(t,A,x,) = O(Z; *o) + z b, (A, x5) cos[nwt + g, (A,x5)], (4.8)

- n=1

where b, and @, represent respectively the amplitude and
phase of the n*™? harmonic.

Additional information about S, may be obtained by
letting

(wt + @) =0 , (4.9)

in Eq. (4.5). Equation (4.6) becomes

SZ(G,A,xo) = f[A cos 0 + xO] - Yo - (4.10)

Thus,

$,(-6,A,x]) = 5,(6,A,x,), (4.11)

showing that S, is an even function in 6. The Fourier series
expansion of SZ(O'A'XO) in @ then contains only terms of the

type cos(nf). Comparing this to Eq. (4.8) shows

ng = n(wt + @) = nwt + g, (4.12)

or

By =0 . (4.13)

Thus, the phase shifts of the various harmonics of Eq. (4.8)
do not depend on A, Xy, Oor the functional form of f(x). The

series can then be written as

2 + E:bn(A,xo)cos[n(wt + )] . (4.14)

n=1

Sz(t,A,xo) =
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The effects of the nonlinearity of £{x) on the input sinusoid
are apparent in this expression. The term bj cos(wt + &)
corresponds to the input Sl' The device introduces no phase
shift in this signal. The term bo/2 corresponds to a dc

bias and the various terms by cos[n(wt + @)] correspond to
harmonic distortions of S;. - The nonlinearity produces no
subharmonics of the input sinusoid.  This effect occurs only
when the input consists of more than one frequency.

Equation (4.14) indicates.the dependence of the harmonic
coefficients on the operating point of the nonlinear device
Xo, and the amplitude of the sinusoidal signal A. If such
a device is used in a system where linearity is desired,
knowledge of the dependence of these coefficients on X5 and
A would show quantitatively the nonlinear effects and reveal
optimum input conditions for their minimization. Subsegquent
sections present methods of obtaining these coefficients

. from characteristic curves.

4.3  The Description of Nonlinear
Effects by a Noise-to-Signal Ratio

In the previous section, a device having a nonlinear
characteristic was shown to create distortions of an input
sinusoid.  For a signal given by

_Sl(t) = A cos(wt) , (4.15)

the output of the device was described by

b
: Sz(t) = 7§'+ bncos(nwt), (4.16)

1

o}
f~1s
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where the b coefficients depend on the amplitude of the input
sinusoid A and the operating point of the device. A complete
description of the nonlinear effects consists of speéifying
these coefficients. In many instances, howevef, a complete
description. of the effects is not needed; and a single
quantity describing their severity is sufficient.

- In electronic circuit theory a quantity called the
"total harmonic distortién" is usedbfor describing the
effects:of nonlinearities on sinusoidal signals (Ryder,1964).
For a distorted sinusoid this quantity is given by the ratio
of the rms value of the sum of the harmonics to that of the

fundamental. = In terms of Eqg. (4.16), it becomes

Lo
p = LB=2 . (4.17)

D2 =

' (4.18)

represents the ratio of the total power carried by the har-
monics to that of the fundamental. If the harmonics are
considered as an equivalent noise generated by the nonlin-
earity, Eq. (4.18) is equivalent to the reciprocal of the
well~known signal-to-noise power ratio of communication

theory (Schwartz, 1959). The term equivalent noise is used
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to describe the harmonics since the usual communication
theory definition of noise assumes that it is independent of
the signal. The harmonics generated by nonlinearities are
signal dependent and cannot strictly be called noise. The

signal-to-noise ratio is defined by

PS
SNR = 3= (4.19)
n

where Pg is the signal power and P, is the noise power.
Equation (4.18) thus represents an equivalent noise-to-

signal ratio or

= = . ~ (4.20)

NSR =

Two other quantities expressing nonlinear effects in terms
of signal and equivalent noise power are defined as the

"signal-power fraction”

p
SPF = ———m (4.21)

Ps + Pn

and the "noise-power fraction"

n
NPF = —7— . (4.22)
Pg + Pn
In terms of the harmonic coefficients, these become
2
by
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and ©

;o

n=2

- .2
). Pa

n=1

NPF = . (4.24)

All of these descriptions of nonlinear effects are equivalent
in that they are functionally related. The knowledge of any
one permits the calculation of the others without additional
information.

In optical data processing systems, multiple noise
sources can exist. For example photographic processes, in
addition to being nonlinear, contain fluctuations in image
structure known as granularity. This effect can be consid-
ered as the addition of noise to the image. If such a pro-
cess 1is to be fully evaluated, both effects must be consid-
ered. For this reason the amenability of the above quan-
tities to include additional noise sources was investigated.
Two sources having equivalent hoise powers given by Ny and
N, were assumed. The noise N, gives rise to Dy, NSRl, SNR; ,
and NPF; while N, produces D5, NSR,, SNR,, SPF,, and NPF,.
The addition of the two sources gives rise to the following

expressions for the combined quantities.

D = 1/1)% + Dg s (4.25)

NSR = NSR; + NSR, ., (4.26)
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. (S8NRy) (SNRj)

SNR = G e - (4.27)
(SPF1) (SPF5)
- . - , 4.28
SFF = §PF, + SPF, - (SPFq) (SPF,) (4.28)
NPF; + NPF, - 2(NPF;) (NPFy)
NPF = —& 2 1 2 (4.29)

1 - 3(ﬁp‘Fl) (NPF,) ot

These equations show that the quantity NSR is most easily

calculated when two sources are present. The simple addition

rule indicated by Eq. (4.26) can be extended to include

multiple sources. The NSR description of nonlinear effects

was thus chosen for use in subsequent work.
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5. NONLINEARITIES IN OPTICAL CORRELATION
PROCESSORS

5.1 Introduction

In this chapter, the effects of nonlinearities on the
operation of a typical optical correlator are described. The
correlator is assumed to operate as part of a larger elec-
tronic system for the reception of pulse-frequency-modulation
telemetry. The reception system (Rochelle, 1963) is used in
satellite and space probe communications. - Optical recording
processes are assumed to transform‘the electrical signals
into photographic transparencies which form the input to the
correlator. These processes can contain nonlinearities which
degrade the correlator operation. A description of the recep-
tion system and an idealized model of its operation with
linear recording processes are first presented. Nonlinearities
in the optical recording are then introduced and the resulting
effects on the correlation processing described. - Finally,
three numerical examples are presented. In these, typical
optical recording characteristics are used to demonstrate

quantitative effects on the correlator operation.

5.2 Mathematical Model of the Operation
of the Correlator and Reception System

The reéeption system receives a sequence of frequency
modulated RF pulses. The pulses are of time-length T and
begin at intervals of 2T. During each pulse a single RF

frequency is transmitted. This frequency corresponds to
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one of a set of N possible signals. The detection process
consists of determining which of these signals is present in
each pulse. Previous to the correlation processing, the RF
pulse are demodulated to form a sequence of low-frequency,
time~limited sinusoids. The sinusoids corresponding to the
various signals are harmonically related. A member of the
demodulated signal set can thus be represented during the

occurrence of a pulse by
fp(t) = A cos(pwot) , (5.1)

where p is an integer (1 < p < N) indicating which signal is
present, A is the signal amplitude, wy is the fundamental
radian frequency of the signal set, and t is time. The
pulse length T is an integer number of periods of the funda-
mental radian frequency wg,. Under this condition, the
various demodulated signals form an orthogonal set over the
pulse interval.

The optical correlator acts as a channelized, matched
filter for the detection of the demodulated signals. The
reference transparency thus contains N channels, each having
a replica of one of the sinusoids of the demodulated set.
The incoming signals are continuously recorded on the signal
transparency and correlated optically with the channels of
the reference.

In the optical recording processes, a time-to-space

transformation
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d"-:Vt, (5.2)

is made where d is a spatial variable and Vo is the record-
ing velocity. The spatial length of a recorded signal is
thus

As a function of d, a member of the signal set becomes

_ wo '
fp(d)‘— A cos (p Ve d). (5.4)

w
In order to clarify the equations, the quantity (;9) is
o
normalized to one. The spatial representation of a signal

is then

fp(d) = A cos(pd) ., (5.5)

during the occurrence of a pulse. These functions are
optically recorded. The amplitude transmittance of the
resultant signal transparency is described by Sp(x) where p

identifies the signal present and x represents a spatial

variable (in the direction of processing) on the transparency.

Similarly, the transmittance of a channel of the reference
transparency is given by.Rq(y) where g (1 < g < N) denotes
the channel and y is the appropriate spatial variable.

The output of channel q of the correlator with signal

P present is described by

wrZze
Cqp(2) = £ § Sply + 2)Rq(v) av. (5.6)

-L/2
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where L is the aperture length of the correlator (spatial
equivalent of the.pulse length) and Sp(y + z) is the image
of the recorded signal at the reference transparency plane

(after displacement by the correlation variable z). The

quantity C is the cross-correlation integral. Since L is

ap
an integer number of periods of the fundamental spatial
frequency of the signal set, the various undistorted signals
are orthogonal over the aperture.

In the remainder of this section, the effects of the
pulse nature of the signals on the correlation integrals
are neglected. The time limitation of the signals imparts
a triangular envelope of length 2L to the periodic correla-~
tion functions described here. This simplification allows
the nonlinear effects to’be observed without undue complication.

If the optical recording processes are linear, the ampli-

tude transmittance of the signal transparency is described by

Sp(x) = aj, + a; cos (px) ., (5.7)

where p denotes the signal present, and a, and a; are deter-
mined from the recording process used. Similarly, the trans-

mittance of channel g of the reference transparency is
Rq(y) = by + by cos(ay) , (5.8)

where b, and b; are determined by its recording process.
When used in Eg. (5.6), the bias terms in these equations

can be neglected since the correlator is assumed to contain
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a "dc stop." Substituting the resultant expressions into

- Bg. (5.6) gives

L/2
qu(z) = % S ajbjcos[p(y+z)] cos(qy)dy. (5.9)
-L/2
Evaluation yields
0, a#p
5 ayby cos(pz), 9 =p . (5.10)

An output thus appears in the channel of the correlator which
corresponds to the input signal, and indications in the
others are zeio. This corresponds to normal operation of the
system.

When the optical recording processes are nonlinear, the
signal and reference transparencies contain harmonic distor-
tions as described in Chapter 4. The resulting amplitude
transmittance of the signal transparency with signal p pres-
ent can be expressed by the series

So

Sp(x) = ??-+ S cos (mpx) , (5.11)

% ~1s

where the s coefficients result from the nonlinear character-
istic of the signal recording process. In a like manner the
transmittance of channel q of the reference transparency is

given by
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To

Rgly) = 5 + ry cos(ngy), (5.12)

:3 .
I 18

where r coefficients result from the characteristic of the
reference recording process. The harmonic distortions can

be expressed as equivalent noise~to-signal ratios given by

o]
2
), S
NSRg = B — (5.13)
S1
and -
Z 2
r
_ n=
NSRr = -———-——2— R (5.14)
o

where the subscripts S and r denote, respectively, the signal

and reference transparencies. The correlator can thus be

considered to contain two internal equivalent noise sources.
The effects of the nonlinearities on the operation of

the correlator are obtained by substitution of Eqs. (5.11) and

(5.12) into Eq. (5.6). This yields

: /2 o
Cap(2) = %-g /{ ;lemcos[mp(y+z)]}
~L/2 =

[ ) rq cos(nay)] dy , (5.15)
n=1

when the dc terms are omitted. This expression can be re-

written as
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-]

@ L/2

qu(z) = E: Sm z: rp %-S cos[mp (y+z) ]
m=1 n=1 -1/2

cos (ngy) dy. (5.16)

Due to the orthogonality properties of the cosine functions,

1 ‘L/Z .
E'S cos[mp(y + 2z)] cos(ngy) dy
-L/2 o
_{O,Empyfnq
.‘%.cos(mpz), mp = nd, (5.17)

and Eq. (5.16) can be written

@
1 A
qu(z) =3 z:Smrn cos (mpz) dmp,nq - (5.18)
: m=1 ‘
where 5mp,nq is one for mp = ng and zero otherwise. The

output of the correlator is thus non zero in those channels
having a common frequency with the signal transparency.

- Outputs exist in channels corresponding to incorrect de-
tection of the signal. The output of the correct or signal

channel is

m.

[ m=1

[qu(z)]p=q”= %- ZZS Yo cos (mpz) . (5.19)

Two other specific cases are

[Cqp(2)lgeop = = ). SonTy cos (2mpz) | (5.20)
m=1
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and

[qu(z)]q=§.= %- 2£ Sp¥om cos (mpz) . (5.21)
m=

which indicate the output of the channels corresponding to
twice and half the frequency of the signal channel. Similar
expressions can be obtained for other channels.

The equivalent output powers (mean squared amplitudes)
of various channels of the correlator serve as convenient
measures of the severity of the nonlinear effects. - Expres-

sions for these can be obtained directly from Eq. (5.18) as
w~~
= L 2 2
Pqp =3 E;Sm ry 5mp,nq ' (5.22)
m=

where Pqp indicates the eguivalent output power of channel g
with signal p present. This quantity can be normalized
with respect to the equivalent power in the signal channel.

The resulting expression

«KQ
2
~ “zism rd Smp, ng
P =
EPRqp = fE“f%E-'= m=l , (5.23)
aP-g=p jz S% r%

1
indicates an "error-power ratio" existing between the outputs
of channel q and the signal channel. For the signal channel,

the quantity becomes unity. The definition of the EPR is

similar to that of the noise-to-signal ratio introduced
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previously. It represents the ratio of the power of an.equiv-
alent noise source (unwanted output) to that of the desired

signal.

5.3 Examples

A variety of optical recording processes can be employed
to produce transparencies for use in optical correlators.
The form and extent of the nonlinearities involved in these
processes can vary considerably. Three examples which
represent typically occuring nonlinearities are considered.
In each example it is assumed that a single characteristic
describes both the signal and reference recording processes.
The harmonic series of the transparences resulting from each
characteristic are derived and the corresponding NSR's and
EPR's calculated.

The characteristic for the first example is linear.
That of the second follows a square law and that of the third
an exponential. A linear characteristic can result from use
of a small operating region within a larger nonlinear char-
acteristic or from using pre-distortion techniques to cancel
nonlinear effects. - Characteristics approaching square law
and exponential curves can be obtained, respectively, from
positive and negative photographic processes used in con-
junction with primary electro-optic modulators such as
cathode ray tubes.

The characteristics for the optical recording processes

of the three examples are shown in Figures 5.1 through 5.3.



83

i

T, =V
o .8
0
o
I
I
4
-
=
7}
5
g -2
e
0}
g
3
ES)
-
B
g -2
I
©
EA
Y " .
.2 .5 .8
v, volts
Figure 5.1 A linear characteristic
q’ 1
2 T = V2
o a
I
ES]
-
&
g .64
1
vl
L
Q
ko)
3
3
-
o
=]
g .25
©
=}
.04
.2 .5 .8
v, volts N

Figure 5.2 A square law characteristic



84

1
0]
2 2v
s Ty 7 e
B a
B
g .67
o
]
v
13
Q
g
2 .37
-
B
5

.20
©
o]

-
.2 .5 .8
vV, volts

Figure 5.3 An éxponential characteristic



85

They describe the variation of the amplitude transmittance
of a resulting transparency with input voltage. 1In the

examples, the signals are assumed to be recorded with a bias

.level of .5v and an amplitude of .3v. The spatial represen-

tations of the electrical inputs and thus given by

Vp(d) = .5 + .3 cos(pd) , (5.24)

where 1 < p £ N.
In the linear case, the amplitude transmittance of the

signal transparency with signal p present becomes

Sp(x) = .5 + .3 cos(px) ., (5.25)
and the transmittance of channel q of the reference is

Rq(y) = .5+ .3 cos(qy) . (5.26)

Since no distortions are present, the corresponding noise-to-
signal ratios are zero. With signal p present the correlator

output in the signal channel is

[qu(x)]p=q = (.045) cos(pz) - (5.27)

. Outputs of the other channels are zero, and the corresponding

error-power ratios vanish as shown in Table 5.1. The correla-
tor thus operates normally.
In the square law example, the amplitude transmittances

of the transparencies are described by

Sp(x) =[.5+ .3 cos(px)]2 . (5.28)
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Table 5.1 Error-power ratios corresponding to three optical
recording. characteristics

Signal-reference ’ Characteristic

channel relation

a/p

s se g eo W

Linear ' . square law ° Exponential
1 1.0 1.0 1.0
1/2, 2 0 .2249 x 10~t .2184 x 107%
1/3, 3 0 0 ,2045 x 10~3
1/4, 4 0 0 .1690 x 1073
2/3, 3/2 0 0 .4471 x 1073
3/4, 4/3 0 0 .3458 x 1072
and
2
Rq(y) =[.5+ .3 cos(ay)]” . (5.29)

or, after expanding,
. Sp(x) = (.295) + (.3)cos(px) + (.045)cos(2px), (5.30)

and

Rq(y) = (.295)+(.3)cos (qy)+ (.045)cos (2qy) . (5.31)

The signal transparency and reference channels thus contain
second harmonic distortions. The corresponding noise-to-
signal ratios are

NSRg = .225 x 1071 , (5.32)

and



87
NSR, = .225 x 1071 . (5.33)

Because of the harmonics, unwanted outputs occur in channels
corresponding to twice and half the frequency of the signal
channel. The resulting error-power ratios, calculated from
the harmonic coefficients of Egs. (5.30), (5.31), and (5.32)
are shown in Table 5.1.

In the exponential case, the form of the recorded signal
can be obtained from a Taylor series expansion of the charac-
teristic about the bias point. Neglecting orders higher than

the fourth, the amplitude transmittance is given by
T_(v) = £ [1-2(v-.5)+2(v-.5)2
a e
-2 (v-.5)3 4 2 (v-.5)4] . (5.34)

Substituting Eg. (5.24) in this expression and expanding the
resulting powers of the cosine function into multiple angles

gives

Sp(x) = (.4017)-(.2307) cos(px)+(.0341)cos (2px)

-(.0033)cos (3 px)+(.0003)cos(4px) , (5.35)

for the signal transparency and a similar expression for the
reference channels Rq(y). The noise-to-signal ratios corre-

sponding to these expressions are

NSRg = .2206 x 1071 , (5.36)
and

NSR, = .2206 x 107! . (5.37)
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Harmonics higher than the fourth do not appear in Eq. (5.35)
due to the truncation of the Taylor series. The higher order
terms of this series give rise to additional harmonics and
small contributions to the ones retained above. These are
neglected. The four harmonics of Eq. (5.35) give rise to
outputs in the channels listed in Table 5.1.  The error-
power ratios shown were calculated from the coefficients of
Eqg. (5.35) and Egq. (5.23).

In this example, the Taylor series expansion was employed
to obtain the harmonic coefficients of the recorded signals.
Versions of this method have been used by several authors as
described in the review of the literature. Other series
expansion methods may be used, however. The Taylor method
and a number of these are described more thoroughly in the

next chapter.
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6. EXPANSION METHODS FOR DETERMINING
HARMONIC COEFFICIENTS
6.1 Introduction
" In Chapter 4, the output of a sinusoidally excited, zero-
memory nonlinear device was described by a harmonic series
with a fundamental frequency equal to that of the input. The
harmonic coefficients of this series may be obtained by ex-
panding the characteristic function representing the non-
linearity. The expansion is carried out with a series of
appropriate functions within the operating region spanned by
the input sinusoid. In this chapter the equations necessary
for using the Taylor, Fourier, Legehdre, and Tchebyscheff
expansions for this purpose are developed. The equations for
each expansion method are obtained with relatively few re-
strictions on the form of the characteristic function. This
establishes their use in correspondingly wide classes of
application. - Following the developments, applications of the

various expansion methods are discussed.

Two versions of the Fourier series method are presented.

- In method A, a direct expansion of the nonlinear character-

istic is assumed. This method has disadvantages if the
characteristic is continuous within the operating region
([a,P]) but does not meet the boundary condition

f(a) = £(b) (6.1)
The periodic extension of the characteristic contains dis-

continuities and the resulting Fourier series is slowly
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convergent (Lanczos, 1966). This problem can be avoided by
assuming an even extension of the characteristic about either
of the end points and computing the Fourier expansion of the
resulting function. Since the periodic extension of such a
function is continuous, its Fourier series is more quickly
convergent. This procedure is employed in method B. When
successively higher derivatives of the characteristic are
continuous within the operating region, more rapidly conver-
gent Fourier series expansions can be obtained and correspond-~
ing equations for the output harmonic coefficients can be
developed. Lanczos (1956) described and developed equations
for a method that is rapidly convergent when the character-
istic and its first derivative are continuous.

In the derivations which follow, the nonlinear charac-
teristic is termed f(x) and the operating region is assumed
to be [-1,1] with the input sinusoid given by

X = cos 6. (6.2)
The output of the nonlinear device is then f(cos 6) which

is an even function of 8. Its harmonic expansion in 8 can

thus be written

]

f(cos ) = %-E:ek b, cos (k8), ) (6.3)

k=0

where
X

by = %-S f(cos 6) cos(ke) 49, (6.4)
o
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and the Neumann symbol €y is given by

€o = 1, (6.5)

€l=€2=.-.=2. (6.6)

This definition of the ¢ symbol is assumed throughout this
chapter.

In the drivations, the order of integration and summation
of infinite series of functions are interchanged. Use of
this procedure is based on Arzela's theorem as stated by

Apostol. (1957).

6.2 Taylor Series

The Taylor series expansion of f(x) about x = 0 is given

by o
£(x) = Z a, x" , (6.7)
n=o ’
where
I N I L
an = 1 [35 f(x)]xzo. (6.8)

If f£f(x) is continuous and has continuous bounded derivatives
of all orders on an interval containing [-1,1], then the
series (6.7) converges on [-1,1] (Apostol, 1957). Replacing

x by cos 6 in Eq. (6.7) gives

©

f(cos @) = E: ap (cos )" (6.9)
n=o0

which may be substituted into Eqg. (6.4) for the kth output

harmonic coefficient yielding
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o -]
2 ]
by = 2 So [;lzoan(cos 6)" | cos (k6) ap. (6.10)

. Since the series (6.9) is convergent for all 0 <6 < m, the

order of integration and summation in (6.10) can be inter-

changed so that

i

by = 2 -Zang‘(cos 8)™ cos(k8) d6. (6.11)
n=o0 o

The integrals in this expression can be evaluated by using

the expansions (Mangulis, 1965)

n n
(cos )™ = (PP ) en (25) cosmd) (6.12)
m=0,2,...
for even n and
n-1 - n
n _ 187 n-m
(cos B)" = (50 Z:,'<—E—> cos (mg) , (6.13)

m=1l,3,...

for odd n, where the large parentheses denote binomial coef-
ficients. Substituting these into (6.11) and again inter-

changing orders of integration and summation gives

o

S (cos 6)n cos (k@) 49 =
o

n h n
& Y em (B So cos (mg) cds (k@) do | (6.14)
m=0,2,...

for even n and
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tl
S (cos 6)™ cos (k@) A9 =

o
('2]‘)n—l i (%} Sﬂcos (mg) cos (k@) d6. (6.15)
' o

m=1l,3,...

for odd n. Evaluation of the integrals in (6.14) and (6.15)
yvields

m 0, k
S (cos 8)"cos (k9)dg = { Ooms

n.
l1yn (n-m’
(=) (AT

o (2) («2 ) , 2k (6.16)

for all n. Substitution of this result into Eq. (6,11l) yields

% =n=;:k+:n (%on_l (BEE)" | (6.17)

which is the desired equation relating the Taylor expansion

coefficients a, to the output harmonic coefficients Dby.

n

Equation (6.17) can be written as

-]

by = Z an 9nk - (6.18)
n=k,k+2,...

where

1 n-1 n—k - .
() =/ (n-k) even and non -negative

g =
nk 0, otherwise (6.19)

The coefficients g, for k < 5 and n £ 10 are shown in Table

6.1.
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Table 6.1. Non-vanishing coefficients gpk for the
Taylor series expansion method with
k. <5 and n £ 10

NE| o 1 2 3 4 . 5 -
g 2.0000
1 1.0000
2 | 1.000 .5000
3 .7500 .2500
4| .7500 . 5000 .1250
5 . 6250 .3125 .0625
6 .6250 .4688 .1875
7 .5469 .3281 .0882
8 |  .5469 .4375 .2187
9 .4922 .3281 .1266';
10 .4922 .4102 .2344

6.3 Fourier Series - Method A

The Fourier series expansion of f(x) on [~-1,1] can be

written
«©
f(x) = %leen[cn cos (nmx) + d, sin(nmx)], (6.20)
n=o0
where
N _
cp = S £(x) cos(nmx) dx , : (6.21)

-1
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d, = Sl f(x) sin(nnx) dx , (6.22)
-1
and d, vanishes as implied by Eq.! (6.22). If f£(x) is con-
tinuous and square integradable on [-1,1], the series (6.20)
converges on [-1,1] (Jackson, 1941). Replacing x by cos 6

in Eg. (6.20) gives

-]

f(cos 9) = %-Z}en [cn cos(nn cos @) + dy sin(nm cos@)], (6.23)

n=o

which is convergent for 0 < § < m. Substituting the series
(6.23) into Eq. (6.4) for the kth output harmonic coefficient

and interchanging the order of integration and summation gives

® ™
by = %-z:en [cn'S, cos (nmT cos Q) cos (k@) A
n=0 o
i
+ dy S sin(nm cos 0) cos(k@) 48] . (6.24)
o

The integrals in this expression can be evaluated using

. (Mangulis, 1965)

o0

cos (nT cos Q) = Z:em(~1)m/2 J, (nm) cos(mg) , (6.25)
m=0,2,... ‘
and
= m-1
sin(nm cos @) = 2 2: (-1)" 2 J., (nm) cos (mg), (6.26)

‘m=l,3,..,
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where J, is the mth order Bessel function of the first type.
Substitution of Egs. (6.25) and (6.26) into the integrals of
Eq. (6.24) and interchanging orders of integration and summa-

tion gives

T

S_ cos (nm cos @) cos (k@) 46 =
o
< m/2 m
Y em(-D™F gy (am) S cos (m§) cos (kB) d§ . (6.27)
m=0,2,;:.. o
and
m

S sin(nm cos @) cos(k@) 4o =
o

> m-1 ul
2 ) (-1) 2 3y (nm) S cos (mg) cos(kf) 48, (6,.28)
o

m=l,3,...

which, upon evaluation, yield

m ~1'r(—l)k/2 Jx (nm), k even
S cos (nT cos @) cos(kf) dg = {
o) ' ‘0, k odd, (6.29)
and
AT { 0, k even
8031n(nﬂ cos @) cos(k@) dg = :ﬂ(—l)‘grl)/ka(nﬂ), k odd.
(6.30)
Substitution of these results in Egq. (6.24) gives
by = (-1)5/2 Y en cn Ji(om) (6.31)

n=o
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for even k and

o
by = 2(_1)(k—l)/2‘z: dn Jk(nm) , (6.32)
n=o0
for odd k, as the resulting expressions for the output
harmonic coefficients.
Equations (6.31) and (6.32) can be rewritten as

bk = z Cn gnk f) (6.33)

n=0

for even k and

(-]
b = Eldn 9nk - (6.34)
n=o

for odd k, where

: { e:n(--l)k/2 Jk (n1), k even

g =
nk 2(-1) &-1)/2 5 (nm), k odd. (6.35)

Table 6.2 shows the gpx for k < 5 and n < 10.

6.4  PFourier Series - Method B

A Fourier series expression for f£(x) on [-1,1] may be
obtained by defining a related function g(x) on [-2,2]. On

[0.2]), g(x) is the translation of f(x) given by
g(x) = £(x - 1). (6.36)

;On [-2,0], g(x) is extended evenly. Because of the evenness
property, Fourier series expansion of g(x) on [-2,2] contains

only cosine terms. This expression is then given by
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Table 6.2 Coefficients gpx for the Fourier series
expansion method A with k € 5 and n < 10

N[ o 1 2 3 4 5
o| 1.0000 0.0 0.0 0.0 0.0 0.0
1 |- .6085 .5692 - .9707 - .6669  .3028 .1043
2 .4406 - .4248 .5758 - .0582 .6314 .7456
3 |- .3624 .3535 - .4374  .1678 - .5443 - .2942
4 .3150 - .3091 .3642 - .1931 .4564 .0974
5{- .2824 .2781 - .3178 .1971 - .3931 - .0030
6 .2581 - .2548  .2852 - ,1943  .3470 - .0470
7 |- .2392 .2366 - .2607 .1892 - .3123 .0755
8 .2239 - .2218 .2416 - .1833  .2853 - .0925
9 |- .2112 .2094 - .2261 .1774 - .2637  .1028
10 .2005 ~ .1989  .2132 - .1718  .2460 -~ .1092
®
g(x) = %-z en a, cos (r;_rr x), (6.37)
n=0
where
ap = S' g(x) cos(9§§0 dx. (6.38)
O

If £(x) is continuous and square integrable on [-1,1], the

series (6.37) converges on [-1,1] (Jackson, 1941). The

coefficients a, can be evaluated in terms of f(x) as
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1
an = § £60 cos[Bltx + 1] ax . (6.39)
21

Replacing x by (x + 1) in Eq. (6.37) and using Eq. (6.36)

gives
" .
f(x) = %—,E; €ndn cos[%?{x + 1)] | (6.40)
n=o0
or
f(x) = %— z:enan fcos(%g) cos(ggg- - sin(%?? sin(BgKO]. (6.41)
n=o0

Substituting cos 8 for x in this expression and using the
resulting series in the equation for the kth output Fourier

coefficient gives

'IT o]
_ 1 - ntm nn
by = p= So { z:en an.[cos(jfﬁ cos(jf-cos 8)
© n=0

- sin(%?) sin(%?—cos 9)]} cos (k@) d6. (6.42)
Interchanging the order of integration and summation yields

b= w

n
€n ap [cos(%g)’g cos(%?cos 6) cos(kB) do
o

o]
It 8
OM

T
- sin(Z Ssin(%ﬂcos 6) cos(k8) d97 - (6.43)
O

The integrals in this expression may be evaluated with the
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help of the expansions (6.25) and (6.26) where nmm is replaced

by %g'- Using these as in the previous derivation gives

0o k/2 ntm
-Sicos(Eﬂcos 0) cos (k6)de =‘{‘ ) n Jk(1r0. k even
o 2 >~ 0, k odd , (6.44)
and
" ntm { 0, k even
. sin(=5—cos 0)cos (k§)dg = _
‘So 2 (-1) &"1)/2, 3 (B,

-k odd, (6.45)

Substituting these results in (6.43) gives the equations for

the output harmonic coefficients:

b= (-2 Y oy an (-1 25 ED, (6.46)

N=0,2, 400

for even k and

=<}

k-1)/2 n-1)/2
b = 2(-1) FTN2Y 5 oy T2 @y (6.47)
‘n=1,3,...
for odd k.
These equations can be rewritten as
«©
by = \Z: an 9nk- (6.48)
n=0,2,...
for even k and
-
b, = z a, 9o (6.49)
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for odd k where

nt+k
en(-1) 2 Jk(%?); n,k both even
n+k~2
Ink = 2(-1) ?‘ Jk(%?); n,k both odd
0; otherwise. (6.50)

The non-vanishing gpyx for k < 5, n £ 10 are shown in Table 6.3.

Table 6.3. Non-vanishing coefficients g, for the
Fourier series expansion method B with
k £5 and n £ 10

- ,
n 0 1 2 3 4 5

0 1.0000

I 1.1336 -.1381 .0045
2 .6085 .9709 -.3028

3 .5633 .8117 -.4460
4 .4406 .5758 .6314

5 .4225 .5758 .4343
6 .3624. .4374 .5443

7 .3522 .4540 .4774
8 .3150 .3642 .4564

9 .3082 .3815 .4365
10 .2824 .3178 .3931
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6.5 Legendre Series

The Legendre series expansion of f£(x) on [-1,1] (Kaplan,

1952) is given by

-]

£(x) = zgn. P, (x), (6.51)
n=0 '
where
an+1 ¢t
ap = 282 (£ put0) ax, (6.52)
-1

and P, is the Legendre polynomial of order n. A sufficient
condition for the convergence of (6.51) on [-1,1] is that
f(x) is bounded, continuous, and integrable on [-1,1] (Sansone,

1959). The Legendre polynomials are defined by

Po(x) = 1, | (6.53)

Il

Pl(x) X, (6.54)

and the recurrence relation

(x) = 2nt+1 XP (x)

n+l +1 - +l n_l(x)l (6-55)

or by the Rodregues formula

Py(x) = zor om [ (x2 - 1)P. (6.56)

Replacing x by cos 8 in Eg. (6.51) gives

-~}

f(cos 6) = E:an Pp(cos 6), (6.57)
n=0

which is convergent for 0 < 8 < m. Substituting this expression
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into the expression (6.4) for the xth output harmonic coef-
ficient gives
™

an [ { Plcos 8) cos(ke) a0), (6.58)
e

bk=_.2_

o]
i 8
OPVﬁ

after interchanging the order of integration and summation.
The integrals in (6.58) can be evaluated by using the expan-

sions (Mangulis, 1965)

n ,r(n m+l) I‘(n+m+l)
Ph(cos B8) = %- E} € —= — cos (mg) , (6.59)
m=0,2,... (2 Cz7):

for even n and

n-m+1l n+m+ 1
TR (RS

n
Po(cos 8) =2 ) - cos (m8) , (6.60)

for odd n, where I’ represents the gamma function. Substitut-

ing these expansions into the integrals of (6.58) and again

_interchanging the order of integration and summation gives

m

S, P, (cos 8) cos (k@) 4=
(@]
n (n m+l) r(n+m+l) R
L z —— S cos (mg) cos (k@) 48,  (6.61)
m=0,2,... Sowk (2)' o

for even n and
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i

S Pn(cds 0) cos(kg) do =
o
n n- m+l n+m+l T
%. z: rC2 )1TH) cos (mf) cos(ke) 4,
« ntm,
m=1,3,... (2)' (2)° o (6.62)

for odd n. Evaluation of the integrals in these expressions
gives

il
S P,(cos @) cos(kf) dB =
o

0, n<k
I‘(n k+l) r(n+k+l)
, n>%k , (6.63)
E5 3

for all n. Substitution of this result in (6.58) gives

n- k+l

I ( ) T (Rt

a
n , k.,
n=k,k+2,... ( 2 ) T 2 )

(6.64)

dlw
PV18

by =

which is the desired expression, relating the harmonic coef-
ficients by to the Legendre coefficients aj,.

Equation (6.64) can be written as

*®

bk = z: an 9o ¢ (6.65)
n=k,k+2,.,,..

where
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- (n-k) even and
™ (n—k). (n+k). ! non negative
2 /° V2
Ink =
0, otherwise (6.66)

Table 6.4 shows the non-vanishing gp; for k < 5 and n < 10.

Table 6.4. Non-vanishing coefficients g, for the
Legendre series expansion method with
k £5 and n < 10.

NE 0 1 2 3 a 5
o | 2.0000
1 . 1.0000
2 5000 .7500
3 .3750 . 6250
4 .2812 .3125 .5469
5 .2344 .2734 .4922
6 .1953 - .2051 .2461
7 1 .1709 .1846 .2256
8 .1495 .1538 .1692
o | .1346 .1410 .1571
‘10 L1211 .1234 .1309
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6.6 Tchebyscheff Series

The Tchebyscheff expansion of f£(x) on [~1,1] is given

by (Snyder, 1966)

£(x) = 2) €p ap Talx) , (6.67)
n=o
where
i1 .
S22 et e T
an" ™ S fl—-:—;r dx.1 (6.68)

and Tp represents the Tchebyscheff polynomial of order n. A
sufficient condition for convergence of the series (6.67) is
that £(x) is bounded, continuous, and square intergrable on
[-1,1] (Courant, 1953). The Tchebyscheff polynomials can be
defined by

To(x) =1, (6.69)

x , (6.70)

Tl (%)

and the recurrence relation

Tn+l(x) = 2% Tn(x) - Tn—l(x)’ (6.71)

or by the "Rodrigues" formula

2n-1
n T
(1-x2)% S— [ (1-x2)- % 9 . (6.72)

(-1)"® 2"n!:
(2n):

T (x) =

They can be alternately expressed as

Tn(x) = cos (n cos™*x), (6.73)
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so that when x is replaced by cos 8-
Tp(cos 8) = cos(nf) . (6.74)

Making this change of variable in (6.67) and (6.68) gives

£(cos 8) =L ) e ay cos(ng) | (6.75)
" L N=0
and
2 T
an = o S f(cos B) cos(np)de . {6.76)
o :

- These equations are recognized as those of the harmonic
expansion of the output of the nonlinear device. The
Tchebyscheff polynomials which form the expansion of f(x)
thus correspond to the harmonics of the output signal. - Thg
harmonic coefficients by are given simply by

bk = a, - (6.77)
Because of this unique property, the harmonic coefficients of
the output can be obtained directly from the Tchebyscheff
expansion. The equivalence of the Tchebyscheff and harmonic
coefficients exists, however, only when the change of variable
x to cos 8 1is made. When the expansion is to be applied to an
interval other than [-1,1], an appropriate normalization is

required.

6.7 Applications of the Expansion Methods

In the preceding sections, equations for the output

harmonic coefficients of a sinusoidally excited, zero-memory,
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nonlinear device were developed in terms of Taylor, Fourier,
Legendre, and Tchebyscheff expansion coefficients of the
characteristic function. Each of these expansion methods can
be used when the characteristic meets the stated conditions
which insure the convergence of the corresponding series.

The Taylor series method has been applied, as described
in the literature review, to characteristics given both
analytically and empirically. When a characteristic is given
analytically, . the derivative operations corresponding to Eqg.
(6.7) are usually simpler to perform than computation of the
definite integrals required by the other methods. Many
analytic functions can be well approximated over limited
regions with a small number of terms of a Taylor series; and
in such applications, this method can be effectively employed.
Many characteristics, however, may not meet the continuity
conditions stated in section 2, and direct computation of the
Taylor expansion cannot be accomplished. A characteristic
given in the form of a graph or a table of functional values
also presents problems. Numerical differentiation procedures
are susceptible to noise effects and in many instances, can
be used to obtain, at most, several derivatives (Hildebrand,
1956). 1In applications where the Taylor series coefficients
cannot be obtained directly, curve-fitting procedures such as
the method of least-squares can be used to obtain polynomial
approximations to characteristics. The coefficients of the

fitted polynomials become approximations to the Taylor series
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coefficients. A version of this method was used by Wilczyuski
(1961). Ileast-squares methods used to obtain high order ap-
proximation?, however, can, in some cases, fail to converge
(Hildebrand, 1956); and their uée for empiricaily obtained
functions is questionéble. These versions of the Taylor
series method thus do not appear to be suitable for general
analysis purposes. |

The Fourier series expansion methods developed in sections
3 and 4 can be applied to characteristic functions given in
either analytic or empirical form. The expansion coefficients
of these methods are given by definite integrals which can be
evaluated numerically. The Fourier expansions converge with
minimum restrictions on the form of the characteristic func-
tion. In applications, method B has the advantages of more
rapid convergence described in sectién 1. If, in addition,
the first derivative of the characteristic is continuous,
the method described by Lanczos (1956) can be used to obtain
even faster convergence. Tables 6.2 and 6.3 show that each
of the harmonic coefficients of the output of a nonlinear
device depends on an infinite series of Fourier coefficients
involving consecutive or alternate orders. In applications,
however, convergence of the Fourier expansion allows these
series to be truncated; and approximations to lower order
harmonic coefficients can be obtained from the resulting
finite series. Thus, although the computational procedures
can become rather involved, the Fourier series methods can be

used for general analysis purposes.
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In the legendre series method, the expansion coefficients
are given by definite integrals which are similar in form to
those of the Fourier methods. The integrals can be evaluated
numerically, and the method can be used to analyze both:
analytic and empirical characteristics. As with the Fourier
series, the Legendfe expansions converge with minimum restric-
tions on the form of the characteristic function. 1In contrast
to the Fourier methods, boundary cohditions such as (6.1) do
not directly affect the rate of convergence of the legendre
series; and modifications of the expansion method are un-
necessary. Table 6.4 shows that each harmonic coefficient
depends on the Iegendre coefficients of equal and higher
orders. The convergence of the Iegendre expansion, however,
allows truncation of the coefficient series; harmonic coef-
ficients of lower orders can be approximated in this manner.
The Legendre series method, thus, appears to be suitable for
general analysis purposes.

In the Tchebyscheff method, the expansion coefficients
are given by the definite integrals (6.68) and (6.70). The
form (6.68) is inappropriate for numeric integration since
the factor in the denominator vanishes as the endpoints of
the interval [~1,1] are approached. This singularity does
not appear in (6.70), however, and numerical methods can be
used to evaluate the coefficients in this form. The restric-
tions on the characteristic function stated in sectioh 6 are

sufficiently general to allow the Tchebyscheff method to be
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applied to a wide class of characteristics. Applications
can be made to characteristics given both analytically and
empirically, and the method can be used for general analysis
purposes. Since the Tchebyscheff coefficients are, in fact,
the harmonic coefficients of the output signal, the compu-
tational procedures are simplified. The summations required
by the other methods are avoided and the convergence of the
harmonic expansion is in direct evidence. In the following
chapters, methods of application of the Tchebyscheff expan-
sion method are developed in detail. The choice of this
method was based on the straightforwardness of the computa-
tional procedure and the ease with which errors in the compu-
tations can be related to the resulting harmonic coeffi-

cients.
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7. A NUMERICAL METHOD FOR COMPUTING
TCHEBYSCHEFF COEFFICIENTS

7.1 Introduction

In Chapter 5 some of the advantages of using the
Tchebyscheff expansion for the computation of the output
harmonic coefficients of a sinusoidally excited nonlinear
device were described. This chapter presents a numerical
method through which the Tchebyscheff expansion can be applied
to actual nonlinear characteristics. Section 7.2 describes
the mathematical development of the method. In section 7.3,
the method is formulated in the form of a digital computer
program. The program is used to evaluate the expansion method
and determine its accurady under various conditions of use.
The method is also compared with the other expansion methods

described in Chapter 5.

7.2 The Numerical Method

In the study of nonlinear devices, the characteristic
function (or transfer characteristic) may be given either
analytically, graphically, or numerically. The method of
computing Tchebyscheff expansions presented here can be used
with characteristics given in any of these forms. It con-.
sists of representing the characteristic by a piecewise
linear approximation and computing the Tchebyscheff coef-
ficients of the representation. Since the only approxima-

tions introduced are those in the piecewise representation
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of the characteristic, the method seems to have advantages
over the direct application of numerical integration.
Figure 7.1 shows a typical nonlinear characteristic f(x)

and a region where the Tchebyscheff expansion is desired.

‘The region is given by

|x - x| <a. (7.1)

Making the change of variable

_ X=Xo
==, (7.2)

the region in u is
[u] = 1. (7.3)

The expansion coefficients are then given by either

1 N
2 f(au + xg) Tp(u)
an{A,xX,) = = du , (7.4)
n (o] ™ -S-l 1/‘_‘“‘—‘1_112
or
5 o7
ap(®,xg) = 2\ £(a cos 8 + x;) cos(ng) a8, (7.5)
o

as was shown previously. These equations can be simplified

by defining
g(u) = £(Au + xg5) , (7.6)

in the region given by (7.3). - Equations (7.4) and (7.5) then

become

1
2 S S(u) Tn (u) au | (7.7)

ap (A, x5) =
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and

an(A,xg) = %igﬂ g(cos. 8) cos(ng) 46 . (7.8)
o
The function g(u) can be represented by a piecewise

linear approximation consisting of N segments as shown in
Figure 7.2. When g(u) is continuous, the error in the approx-
imation can be made arbitrarily small by increasing the number
of segments N such that the length of each becomes small. If
a set of N + 1 values of u and g(u) (including the endpoints
of the interval Iu]vg_l) are known, the equations of the cor-
responding segments can be computed. Denoting these values

by u; and g(ui), where 1 < i < N.+ 1, the Tchebyscheff ex-

i
pansion coefficients for the approximation to g(u) are given

by

§ S YL (oj+ dju)Ty(w)

vﬁf;z- du ’ : (7.9)

.wherev(ci + diu) represents the equation for the ith segment.

The -constants c¢j; and dj can be computed for each segment by

solving the simultaneous equations

cy + diu = g(ui) . (7.10)

and

Ci +.dui+l = g(ui+l) - (7.11)
The solution yields

_ (i) wuivy - gluirl) ui (7.12)
Ui+l T Ui

Ci
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Y
A y = £(x)
_\\——/
i iy
. —P— 3L
xO—A Xo xo+A

Figure 7.1 Typical characteristic and desired expansion
region

-1 0 1

Figure 7.2 A piecewise linear approximation to
the characteristic
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and
_ g(ujeq) - 9(uy)

+ Ui+l ~— ui

(7.13)

. Equation (7.9) can be evaluated by making the change of vari-
able
u = cos 6 , (7.13)
so that it becomes
cos_l(ui)

ZS (cy+dy cos @)cos(nf)ds . (7.15)
i=1 cos‘l(ui+l)

A

an=

4

Expansion of the cosine products allows this expression to

be rewritten as

N cos'l(ui)
= 2 4+d .
a = E:S; (cij+dy cos ) de ., (7.16)

a, = ?-—ZS [4di+c; cosf+kd cos(20)1d0 . (7.17)

and

+ % di cos[(n+l)6]} ae , (7.18)

for n > 2.
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The integrals in these expressions can be evaluated so that

N .
=2 cos™ L (u;)
% = "\2:[016+disin 6] -1 1 P (7.19)
i=1 cos™(uy,1)
N
-1 (1
cos™+(uj)
aL = %Z [%d;6+cysin 6+%d;sin(26)] Y (7.20)
i cos‘l(u.
i=1 . i+1)
and
- [ (n~1)8] (ng)
2 T fdisin{ (n-1)8]  cjsin(n@
=T +
an ‘IT. { 2(n—l) n

i=1

dijsin[ (n+1)0] cos‘l(ui)
2 (n+1)

' (7.21)
cos'l(ui+l)

for n < 2. The Tchebyscheff expansion of the piecewise
linear approximation to g(u) can thus be computed from

Egs. (7.12), (7.13), and (7.19) through (7.21). The appli-
cability of this method to numeric data is evident. The data
points simply become the uy and g(ui). If the data are given
in graphic or analytic form, the u; and g(uj) can be respec-

tively measured or computed.

7.3 Evaluation of the Numerical Method

7.3.1 Computer Programs

In order to evaluate the Tchebyscheff expansion method
described in the previous section, several digital computer

programs were written. The programs allowed determination
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of the accuracy of the expansion method under various condi-
tions of use. They also allowed comparison of the harmonic
coefficients obtained by the method to those obtained by

the Taylor, Fourier, and Legendre series methods presented
in the previous chapter. The programs were written in
FORTRAN IV language and were run on an IBM-360 series, Model
75 computer.l/

The program ODP-10 is reproduced in the Appendix and a
flow chart is shown in Figure 7.3. The four digit numbers
in the blocks of the flow chart correspond to statement
numbers in the program. The statements within each block
perform the operations indicated by the title of the block.
The program computes approximations to the Taylor (LMS),
Legendre (LEG), and Tchebyscheff (TCH) expansions of func-
tions on the range [-1,1]. For each function that is ex-
panded, the program input requires a data set consisting of
N equally spaced argument values and the corresponding func-
tional values. The argument values are normalized to the
range [-1,1]. Approximations to the Taylor series coeffi-
cients are obtained by fitting polynomials to the data set by
the method of least squares. The Legendre coefficients are

obtained by approximating the integrals

S‘l £(x) P (x) dx |, (7.22)
=1

l/Triangle Universities Computation Center, Research
Triangle Park, Research Triangle, North Carolina.



BEGIN

DIMENSION DATA STORAGE

0001-0002

I

READ INPUT DATA AND
PARAMETERS FOR FUNCTION
0003-0009

NORMALIZE EXPANSION
INTERVAL TO [-1,1]
0010~-0011

)

DO 54 I=1, M
M IS MAXIMUM ORDER OF EXPANSION =

119

0012 | -

I=M+1

1

¢ I <M

COMPUTE LMS COEFFICIENTS
FOR ORDER I
0013~-0019

INITIALIZE

JPRINT VARIABLES

SUBROUTINE LMS

0055-0057
COMPUTE LEG, TCH
I=M+1 COEFFICIENTS OF ORDER I
0020-0054
_{ DO 94 1=3, M |
0058 e
{1 <™

PRINT LMS, LEG, TCH COEFFICIENTS
THROUGH ORDER I
0059-0068

\

CALCULATE AND PRINT APPROXIMATIONS TO
INPUT DATA AND RESIDUALS FOR ORDER I
0069-0094

Figure 7.3 Flow chart for program ODP-10
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- (see section 6.5 and Eg. (6.52)) by the sums
N-1
_(ﬁ%'f)— ), £(x3) Pnlxy) | (7.23)
i=1
where f(x) is the function being expanded, P, is the nth order
Legendre functioh, and the x; correspond to the N values of
the arguments of the input data set. Approximations to the
Tchebyscheff coefficients are obtained by the expansion
method described in the previous section.

Two programs (ODP-13, ODP-~14) were written to compute
expansions corresponding to the Fourier series methods A and
B described in the previous chapter. The programs utilize
the IBM Scientific Subroutine Péékage subroutine FORIT which
computes Fourier expansions of tabulated functions. The
programs consist of a direct applicétion of the subroutine

and are, therefore, not included in the Appendix.

7.3.2 Expansions of Analytic Functions

When the Tchebyscheff expansion method described in sec-
tion two is applied to an actual nonlinear characteristic,
errors in the piecewise linear approximation produce errors
in the computed Tchebyscheff coefficients. The magnitude of
the errors depends both on the form of the function being
expanded and the number of segments in the p}ecewise linear
approximation. In order to determine the magnitude of the er-
rors obtained under various conditions of use of the expansion

method, several functions having known Tchebyscheff coefficients
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were expanded. The program ODP-10 was used to compute the

expansions.

The first function considered was

£(x) = 1;X, ) (7.24)

“Expansions. were computed on the range [-1,1]. Since the func-

tion is linear, the only nonvanishing Tchebyscheff coeffi-
cients are those of zero and first order. Because of the
linearity, piecewise linear approximations to the function
become exact. A data set consisting of 101 equidistant points
was generated for the function and subsequently used as an in-
put to the program ODP-10. The results of the expansion are
shown in Table 7.1. Errors in the coefficients can be attrib-
uted to approximations, truncation, and roundoff within the
program. The maximum absolute error in any of the coeffi-
cients is 107°. Since the program is written with single pre-
cision statements, seven significant figures are retained in
the computations. Errors of the order of 107> may thus arise
from the repetitive calculations involved in the computation
of the coefficients.
The second function considered was

f(x) = ek(x-1), (7.25)

where k is a constant; Its Tchebyscheff expansion on [-1,1]

is given by (Snyder, 1966)

ek(x_l) = 2e_k z €n In(k) Tn(X), (7.26)
' n=0 '
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Table 7.1 Tchebyscheff coefficients for il%ﬁl on [-1,1]

Order Analytic ODP-10 Error
Coefficient (101 Points)

0 1.0 1.0000 1074
1 -0.5 -.5000 1074

2 0.0 -.1793x107° - 107
3 0.0 .9323x10"/ 1077
4 0.0 ~.3027x107° 107°
5 0.0 .7653x10™° 1076
6 | 0.0  -.8514x1076 10~
7 0.0 .1039x10~> 10-5
8 0.0 ~.8324x10™° 107°
9 0.0 .7138x10™° 107°

th

where In is the n order modified Bessel function of the first

type and ¢ is the Neumann symbol (see Edgs. (6.5) and (6.6)).

n
The function of Eqg. (7.25) can be used to test the Tchebyscheff
expansion method under a variety of conditions since the rate
of convergence of the expansion of Eg. (7.26) depends on the
value of the constant k. For smaller values the expansion is
more quickly convergent. Expansions of the function were com-
puted for k values of one, two, and five. Figure 7.4 shows

the form of the function with these values. Results of using

the program ODP-10 with input data sets consisting of 101

equidistant points are shown in Tables 7.2, 7.3, and 7.4.
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Table 7.2 Tchebyscheff coefficients for e(x-1) on [-1,1)]

Oxder cgzzézgiZnt (10§Dg;igts) Errox
0 .9315 .9315 10~4
1 .4158 .4158 10~4
2 .9984 x 1071 .9988 x 1071 4 x 1075
3 .1630 x 1071 .1631 x 10~1 10-5
4 .2014 x 10~2 .2013 x 10~2 10-6
5 .1997 x 1073 .1990 x 1073 1076
6 .1655 x 1074 .1472 x 1074 2 x 10-6
7 .1176 x 1072 .4553 x 107° 1070
8 .7329 x 1077 ~-.1442 x 1072 2 x 1076
9 .4059 x 1078 -.6830 x 107° 107°
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Table 7.3 Tchebyscheff coefficients for e2(x-1) on [-1,1]

Order cﬁgzéggignt (longgigts) Error
0 .6168 .6171 3 x 1074
1 .4304 .4306 2 x 1074
2 .1864 .1865 1074
3 .5757 x 1071 .5759 x 107t 2 x 107°
4 1373 x 1071 1373 x 107" 1075
5 .2659 x 1072 .2656 x 10~2 3 x 107°
6 .4331 x 1073 .4292 x 1073 4 x 1076
7 .6079 x 1074 .5692 x 1074 4 x 1070
8 .7498 x 107° .3301 x 107° 4 x 1070
9 .8239 x 10°°  -.3225 x 107° 4 x 1076
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Table 7.4 Tchebyscheff coefficients for &3 (x-1) on [-1,1]

- Order cézzézzignt (long;%gts) Brrox

0 .3669 .3674 5 x 1074
1 .3278 .3282 4 x 1074
2 .2359 .2361 3 x 1074
3 .1392 .1393 10-4

4 .6883 x 1071 .6887 x 1071 5 x 107°
5 .2908 x 1071 .2908 x 1071 1075

6 .1068 x 1071 .1066 x 107% , 2 x 10°°
7 .3457 x 1072 .3435 x 1072 3 x 1075
8 .9988 x 1073 .9752 x 1073 3 x 1073
9 2602 x 10" .2358 x 107> 3 x 107°

The analytic coefficient values shown were obtained by using
Eq. (7.26) and tables of modified Bessel functions (Oliver,

1965). The results show that as the analytic expansion be-

comes more slowly convergent, additional errors occur in the
approximations to the lower order coefficients. This can be
seen by comparing the errors shown in the first several rows
of the three tables. The results also show that the program

> and

'is unable to evaluate coefficients of the order of 10~
less. This can be expected because of the limitations on the

computational accuracy mentioned before.
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In order to observe the errors introduced by the piece-
wise linear approximation, expénsions of the exponential func~
tions were computed from data sets containing various numbers
of points. Results of using sets containing 11, 21, 41, and
81 equidistant points for the exponential with k=5 are shown
in Table 7.5 Similar results were obtained for the other
values of k. The results show the increased errors as the
number of points diminishes. It can be seen, however, that
approximations accurate to within three percent are obtained
for the coefficients of orders zero through five with as few

as 21 points.

5(x-1)

Table 7.5  Tchebyscheff coefficients for e resulting
from ODP-10 with various data sets
order Analytic Points in data set
coefficient 81 a1 21 11
0 . 3669 .3675 .3685 .3734 . 3896
1 .3278 .3283 .3294 .3334 . 3470
2 .2359 .2362 .2369 .23%4 . 2469
3 .1392 .1394 . 1397 . 1407 .1418
4 .0688 . 0688 .0689 . 0687 . 0652
5 .0290 .0290 .0299 .0281 .0221
6 .0106 .0106 .0104 .0093 .0023
7 . 0034 .0034 .0032 .0019 -.0049
8 . 0009 . 0009 . 0007 -.0006 -~. 0006

9 . 0002 .0002 -.0000 -.0013 -.0062
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The results presented here indicate that the numerical
expansion method formulated in the program. ODP-10 is capable
of providing good approximations to Tchebyscheff coefficients
‘having magnitudes of 10~4 through unity. The results also
indicate that even for functions such as e5(x-1) which have
slowly convergent expansions, good approximations to the
coefficients through fifth order can be obtained with as few

as 21 equidistant data points.

7.3.3 Comparison with the Other Expansion Methods

The programs ODP-10, ODP-13, and ODP-14 were used to
compute the Taylor, Fourier, Legendre, and Tchebyscheff
expansions of several nonlinear characteristics. The expan-
sion coefficients obtained were used in the expressions
(derived in Chapter 6) for the output harmonic coefficients
of a sinusoidally excited nonlinear device. By truncating
the expansions at various orders, the approximations to the
harmonic coefficients given by the Taylor, Fourier, and
Legendre expansion methods could be compared to those given
by the Tchebyscheff method described in section 2. Expan-
sions of a number of functions were computed. The results
presented here are typical of those obtained.

Figures 7.5 through 7.8 show results of the expansion
of the function eS(X'l) with a data set consisting of 101
equidistant points on the range [-1,1]. Approximations to

the harmonic coefficients of orders one (bl) through four (b4)
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are shown. The various expansions were truncated at orders
three through nine. The approximations to the coefficients
given by the Taylor (LMS), Fourier A (FOA), Fourier B (FOB),
and Legendre (LEG) methods show convergence to the values
given by the Tchebyscheff (TCH) coefficients. - The Fourier
series methods showed relatively slow convergence as cah

be seen in the figures. The somewhat erratic behavior of
the IMS method can be seen in Figure 7.5.

The results demonstrate advantages of using the
Tchebyscheff expansion method. The approximation to a given
harmonic coefficient is obtained directly from the TCH coef-
ficient of corresponding order. For a given order, higher

orders of the Tchebyscheff expansion are necessary.
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8. APPLICATIONS OF THE TCHEBYSCHEFF
EXPANS ION . METHOD

8.1 A Fortran Program for the Analysis of
Zero—-Memory Nonlinear Characteristics

In order to apply the Tchebyscheff expansion method to
the analysis of nonlinear characteristics, a computer program

was written. The program (ODP-1l) utilizes the numerical

method presented in the previous chapter to compute Tchebyscheff

expansions of subregions of a given nonlinear characteristic.
The program also computes the equivalent noise-to-signal
ratios of the subregions. Various subregions of a character-
istic can thus be compared with respect to the signal distor-
tions that they introduce and regions giving minimum distor-
tion can be found. The program is reproduced in the Appendix
and a flow chart is shown in Figure 8.1.

For each subregion the program output containé the
Tchebyscheff expansion coefficients, the corresponding noise-
to-signal ratio, an estimate of the accuracy of the noise-to-
signal ratio, and identification data. The estimate of the
accuracy of the noise-to-signal ratio is obtained by use of
an error parameter. The parameter is part of the required
program input for each characteristic. It corresponds to
the accuracy to which of the functional values of the input
data set are known. In the execution of the program, expan-
sion coefficients less than this value are set equal to zero.

The noise-to-signal ratios are computed as
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|

NORMALIZE INTERVAL
TO [-1,1]
0022-0024

Eg. (7.2)

e
[FOR CHARACTERISTIC

CHECK FOR :
ERRONEOUS DATA
0025-0033

!

DETERMINE FUNCTIONAL
VALUE FOR INTERVAL
0034-0036

Y

CONVERT DATA TO

0013-0015

AMPLITUDE TRANSMITTANCE
AND EXPOSURE QUANTITIES

COMPUTE TCHEBYSCHEFF
EXPANSION COEFFICIENTS
0037-0066 Egs. (7.12),
(7.13),(7.19)~(7.21)

Y f

1

P

HAVE RESULTS FOR
FOR SPECIFIED INTERVALS
BEEN COMPUTED?

DELETE COEFFICIENTS
LESS THAN ¢
0067-0071

0016-0017

No lYES

PRINT RESULTS
RETURN FOR

MORE DATA
0091-0107

DETERMINE

COMPUTE NSR,
DNSR
0072-0084
Eg. (4.20)

]

-3 NEW INTERVAL
0018-0021

NORMALIZE COEFFICIENTS
IF SPECIFIED
0085~0090

Figure 8.1 Flow chart for the program ODP-11
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M
1.2

) ¥h

n=2

2
bl

NSR = (8.1)

where b, represents the Tchebyscheff (harmonic coefficients
and M represents the highest expansion order computed. The
estimates of the accuracy of the noise-to-signal ratios are

computed as

el

DNSR = == (8.2)
6

where.e represents the error parameter. This estimate, thus,
corresponds to the change in the noise-to-signal ratio if a
small random fluctuation having a root-mean-squared value of
€ is added to the function that is being expanded.

- For each characteristic, the subregions are determined
by a list of amplitude parameters and a spacing parameter.
These are part of the required program input and correspond
numerically to numbers of points of the input data set. - Thus,
an amplitude parameter of ten corresponds to a region spanned'
by ten points of the input data set. If the data points are
equally spaced, a specific amplitude parameter implies a
- fixed subregion length.  For each amplitude parameter listed,
the program varies the location of the subregion by incre-
ments corresponding to the spacing parameter. The process
is begun at the beginning of the input data set and is con-
tinued until the region reaches the end of the set. This

procedure is repeated for each listed amplitude parameter.
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8.2 Analysis of the Characteristic Curves
of Type 649-~F Spectroscopic Plates

The fortran program ODP-11 was used to analyze the
characteristic curves of Kodak, type 649-F spectroscopic
plates. The analysis serves as an example of the use of the
program outlined in the preceding section. The results reveal
optimum exposure and development conditions for the use of
the plates.

The curves were obtained in Hurter-Driffield form from
a publication of the Eastman Kodak Company (Kodak, 1967).
They represent 10 second exposure to tungsten illumination
and development in Kodak developer D-19 at 68°F. Each
curve is identified by its corresponding development time.
Tﬁe curves were enlarged photographically to approximately
4" x 8" size. An accurate set of data was taken from each
curve and the corresponding amplitude transmittance vs.
exposure data was obtained using a simple fortran program.
This data was then accurately plotted on graph paper. The
resulting curves are shown in Figure 8.2. Final data for
use in the program was taken from these curves. This pro-
cedure allowed the final data to be in equal interval form.
Thus, a set number of consecutive data points corresponds
to a specific region length. |

In order to determine the accuracy of the data taking,
three independent observations of 96 points on the 2 minute

characteristic were made. A short fortran program was
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written to estimate the standard deviation of the observa-
tions. The resulting estimate was .0033. This estimate was
subsequently used as the error parameter in the program.

The final data set for each of the 649-F characteristic
curves consisted of approximately 90 points. The amplitude
parameters used were 11, 21, 31, etc. and the step parameter
was 5.  Results from the program are shown in Figures 8.3
through 8.10. In the figures the input exposure is assumed

to be of the form
~E(x) = E, + A cos (WyX) , (8.3)

where E, is the bias level and A is the amplitude of the
sinusoid, and w, represents its spatial radian frequency.
Figures 8.3 through 8.6 show the output fundamental (undis-
torted signal) amplitude as a function of bias level and
input sinusoid amplitude A. - Figures 8.7 through 8.10 show
the output NSR as a function of bias level and input
amplitude.

Results of the analysis of the characteristic curves of
type 649-F spectroscopic plates show that the effects of the
nonlinearities can be minimized for a given characteristic
by choosing bias levels appropriate to the amplitude. . 1In
most cases, the optimum bias corresponds to -the maximiza-
tion of the output fundamental amplitude.  Figure 8.11 shows
the NSR's (at optimum bias) of the four characteristics as

a function of this amplitude. It can be seen that under
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optimum bias conditions the 9 minute characteristic exhibits
minimum nonlinear effects. The output fundamental amplitude
.4 represents a threshold value. For output amplitudes less
than this, all of the characteristics give NSR's less.than
.02 with optimum bias. For output amplitudes greater than

this, the NSR's increase rapidly.
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9. CONCLUSION

9.1 . Summary

Two sources of signal distortions in optical data proces-
sors employing coherent light were investigated. Small Devia-
tions of the geometry of signal carrier surfaces within such
processors were shown to create signal distortions correspond-
ing to attenuation, frequency shifts, and, and phase errors
in electronic systems. Geometric deviations of actual signal
carrier surfaces were represented by specific geometric models.
These models allowed quantitative relations to be derived
between the signal distortions and the parameters describing
the geometry.

A method of analyzing the severity of signal distortions
caused by zero-memory nonlinearities was developed. An equiv-
alent noise-to-signal ratio was introduced for the description
of the severity of nonlinear effects. Existing methods of
éomputing sinusoidal signal distortions were compared with the
Tchebyscheff methods. The Tchebyscheff method together with
the noise-to-signal ratio description of nonlinear effects
was formulated as a computer program. The program was used to
analyze the nonlinear characteristics of type 649-F spectro-

scopic plates.

9.2 Findings
The results of the study of deviations of signal carrier

surface geometry show that the primary signal distortions
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introduced by small deviations are phase shifts. The attenua-
tion and frequency shift distdrtions appéar as second order
effects. The equations relating the phase distortions to the
parameters describing the various geometric deviations show
that significant phase distortions exist, even for small devi-
ations, if fairly high spatial frequencies occur in the sig-
nals being processed. The phase distortions increase as the
square of the spatial frequency of the signals.

The comparison of quantities describing the severity of
signal distortions caused by zero-memory nonlinearities shows
the advantages of using the noise-to-signal ratio. If addi-
tional noise.sources exist within an optical processor, the
noise-to-signal ratios combine additively. The comparison of
the expansion methods for determining the output harmonic
coefficients of a sinusoidally excited nonlinear device demon-
strates the advantages of the Tchebyscheff method. The har-
monic coefficients are, in fact, the Tchebyscheff expansion
coefficients of the characteristic representing the nonline~
arity and thus their computation is simplified. The numerical
method of obtaining Tchebyscheff coefficients described in
Chapter 7 was found to give accurate approximations to coef-
ficients of analytic functions.

The analysis of the characteristic curves of type 649-F
spectroscopic plates reveals optimum exposure conditions for
the minimization of nonlinear signal distortions. Recorded

signals which modulate the amplitude transmittance by as much
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as .8 can be obtained with equivalent noise-to-signal ratios
as low as .0l1. When exposed pfoperly, thé plates are capable
of yielding minimal nonlinear distortions.

The_method of analyzing zero-memory nonlinearities devel-
oped herein can be used to determine the severity of nonlinear
distortions both in optical data processing systems and other
applications where such nonlinearities are encountered. The
method can be used effectively in applications requiring

either approximate or precise results.
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11. APPENDIX

11.1 The Fortran Program ODP-10

Kel ODP10 IMS,LEGENDRE, TCHEBYSCHEFF EXPANSIONS
C
0001 DIMENSION X(120),Y(120), XN(lZO) AP(15,15),
*AL(15),AT(15), F2(120)
0002 DIMENSION F3(120),PLMS(15), A(15 15),B(15)
c
. =EXPOSURE (INTENSITY)
c Y=AMPLITUDE TRANSMITTANCE
C XN=NORMALIZED X (-1,1)
¢ AP(I,J) = LMS COEFFICIENT J FOR ORDER I-1
c AL(I) = LEGENDRE COEFFICIENT FOR ORDER I-1
C AT (I) = TCHEBYSCHEFF COEFFICIENT FOR ORDER I-1
c PR = FLIM IDENTIFICATION
C N = NUMBER OF POINTS
c NORD=HIGHEST ORDER COMPUTED
c
C READ DATA
c
4 0003 - DO 400 NAl=1, 100
0004 READ(1, 20) PR, PR1, PR2,N,NORD
0005 20 FORMAT (2A4,A2,215)
0006 M=NORD+1
0007 DO 1 I=1,N
0008 1 READ(1,21) X(I),¥(I)
0009 21 FORMAT (2F10.4)
C .
C NORMALIZE X
c
0010 - DO 2 I=1,N
0011 2 XN(I)=(2.*X(I)-X(N)=-X(1)/(X(N)-X(1))
c
c COMPUTE EXPANSIONS
C
0012 © DO 3 I=1,M
0013 IF(I-3) 6,4,4
0014 4 CALL IMS (XW,Y,I,N,PLMS,ILMS)
0015 DO 10 J=1,1I
0016 10 AP(I,J)=PLMS(J)
0017 IF(ILMS)7,6,7
0018 7 WRITE(3,22) I,ILMS
0019 22 FORMAT(® ', 'ORD+1=',I2,' ERROR(LMS)=',612)
0020 6 N1=N-1
0021 AL(1)=0.
) 0022 AT(I)=0.
- 0023 Il=1-1

0024 DO 60 J=1,N1
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DEL=XN (J+1) -XN (J)
X1=(XN(J)+XN(J+1))/2.
CALIL LEGEN (X1,Il1,PLI,ILEG)
IF (ILEG) 8,9,8
8 WRITE(3,23) I,J,ILEG
23 FORMAT(' °,'ORD+1=',*' PT NUM=',1l4,' ERROR(LEG)=
*',12)
9 AL(I)=AL(I)+(Y(J)+Y(J+1) }*PLI*DEL
IF (XN (J)) 301,100,101
301 ARG1=ATAN (SQRT(1.-XN(J)*XN(J))/XN(J))+3.141593
GO TO 104
100 ARG1l=1.570796
GO TO 104
101 ARG1=ATAN (SQRT (L.-XN (J) *XN(J)) /XN (J))
104 IF(XN(J+1)) 303,102,103
303 ARG2=ATAN (SQRT(1.-XN(J+1)*XN(J+1))/XN(J+1))+
%*3,141593
GO TO 105
102 ARG2=1.57076
GO TO 105
103 ARG2=ATAN (SQRT (L.-XN (J+1) *XN(J+1)) /XN (J+1))
105 CONTINUE
A0= (Y (J) *XN(J+1) =Y (J+1) *XN(J) )/ (XN (T +L)-XN(J))
AL=(Y(J+1)-Y(J)) /(XN (J+1)-XN (J) )
IF (I-2) 107,108,109
107 AT(I)=AT(I)+ (AO* (ARG1-ARG2)+Al* (SIN(ARGl)-SIN
*(ARG2)))
GO TO 60
108 AT (I)=AT(I)+(.5%A1* (ARG1-ARG2)+A 0% (SIN (ARGl) -
*SIN (ARG2) )+.25%A1% (SIN(2.*ARG1)-SIN(2.*ARG2)))
GO TO 60
109 AT(I)=AT(I)+(.5%A1l*% (SIN((I1l-1)*ARGL)-SIN((I1l-1)*
*ARG2) )/ (I1-1)+A0* (SIN(I1*ARGl)~-SIN(I1*ARG2))/I1+
* ,5%A1% (SIN((I1+1)*ARGLl)-SIN( (I1+1)*ARG2))/(I1+1))
60 CONTINUE
AL(I)=AL{I)*(.5*I1+,25)
3 AT(I)=AT(I)/1.570796

PRINT COEFFICIENTS

DO 14 K=1,N
F2(K)=AL(1)+AL(2)*XN (K)
14 F3(K)=AT(1l)/2.+AT (2) *XN(K)

DO 99 I=3,M
Il=I-1
WRITE (3, 24)PR, PR1,PR2,I1

24 FORMAT('l',2A4,A2,' ORDER=',12//)
WRITE(3,25) (AP(I,J),J=1,I)

25 FORMAT(' ', 'LMS ',10(Ell.4,1X))
WRITE(3,26) (AL(J),Jd=1,I)
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FORMAT (' ','LEG ',10(Ell.4,1X))
WRITE(3,27) (AT(J),J=1,I) :
FORMAT('1','TCH ',10(E1l.4,1X)//)

PRINT APPROXIMATIONS

WRITE (3, 29)
FORMAT (' ',4X,'X',9%,'XN',8X,'Y',8X, 'LMS', 7X'
*LEG', 7X'TCH')

SLMS=0.

SLEG=0.

STCH=0.

DO 13 K=1,N

F1=AP(I, 1)

DO 16 L=2,1I

F1=F1+AP (I, L) *XN (K) ** (L-1)

CALL LEGEN (XN (K),Il,FLEG,ILEG)
F2(K)=F2(K)+AL(I)*FLEG

IF (XN(K)) 200,202,201
F3(K)=F3(K)+AT (I)*COS (I1* (ATAN (SQRT (1.~-XN (K) *
*XN (K) ) /XN (K) )+3.141593))

GO TO 203

F3(K)=F3(K)+AT(I)*COS(I1*1.570796)

GO TO 203

F3(K)=F3 (K)+AT (I)*COS (I1*ATAN (SQRT (1.-XN (K)*
*XN (K) ) /XN (K)))

R1=Y(K)-F1l

R2=Y (K)-F2(K)

R3=Y (K)-F3(K)

SLMS+SLMS+ABS (R1)

SLEG=SLEG+ABS (R2)

STCH=STCH+ABS (R3)

WRITE (3, 28) X(K),Y(X),Fl,F2(K),F3(K),Rl,R2,R3
FORMAT (' ',9(F8.4,2X))

WRITE (3,30) SLMS, SLEG, STCH

FORMAT (' ', 'SUM OF RESIDUALS',3(Ell.4,5X))
CONTINUE

STOP

END

SUBROUTINE IMS (X,Y,M,N,PCLMS,ILMS)

X=ARGUMENT
Y=FUNCTION FITTED
M=ORDER+1
N=NUMBER OF POINTS
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PCLMS=RESULTING COEFFICIENTS
IER=0=NO ERROR . .
IER=1=SOLUN IN SIMQ WAS SINGULAR
A=DUMMY

B=DUMMY

DIMENSION A{15,15),B(15),X(200),Y(200),PCLMS(15)
*,AA(225)

INITIALIZE

COMPUTE MATRIX

DO 4 I=1,M

DO 4 J=1,M

DO 4 K=1,N

IF (I+J-2) 12,1,12
A(I,J)=A(I,J)+1.

GO TO 4
A(I,J)=A{I,J)+X(K) ** (I+J-2)
CONTINUE

COMPUTE VECTOR

DO 3 I=1,M

DO 3 K=1,N

IF (I-1) 6,5,6
B(I)=B(I)+Y(K)

GO TO 3
B(I)=B(I)+Y(K)*X(K)**(I-1)
CONTINUE

SOLVE

CALL ARRAY(2,M,M,15,15,AA,A)
CALL SIMQ (AA,B,M,IER)

DO 8 I=1,M

PCIMS (I)=B(I)

ILMS=IER

RETURN

END
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11.2 The Fortran Program ODP-11

ODPll: NONLINEAR CHARACTERISTIC ANALYSIS
PROGRAM

DIMENSION NP(15),NORD(15),X(105),YIN(105),
*XN (105) ,AT (15,105, 10)

DIMENSION Y (105),X0(15,105),LSAVE(105)
*FER(15,105),SNR(15,105)

DIMENSION ERPS(15,105)

READ INPUT DATA

READ(1, 20) PR,PR1,PR2,NTYPE,N,NAMP,NSTEP,NORM
*,ERR

FORMAT (224,A2,51I5,F10; 4)

READ(1,21) (NP(I),I=1,NAMP)

READ(1,21) (NORD(I),I=1,NAMP)

FORMAT (20715)

PR= IDENTIFICATION SYMBOLS

NTYPE=0=INPUT DATA IS FUNCTION TO BE EXPANDED
NTYPE=1=INPUT DATA IS IN HURTER-DRIFFIELD FORM
N=NUMBER OF DATA POINTS

NAMP=NUMBER OF AMPLITUDES

NSTEP=NUMBER OF INTERVALS IN STEP
NORM=0=COEFFICIENTS ARE PRINTED

NORM=1=HIGHER ORDER COEFFICIENTS ARE NORMALIZED
TO FIRST ORDER

ERR=NOISE LEVEL OF DATA (SET=0 IF NOT USED)
NP(I)= NUMBER OF POINTS IN ITH AMPLITUDE
NORD(I)= HIGHEST ORDER TO BE FITTED TO ITH
AMPLITUDE

DO 1 I=1,N :
READ(1,22) X(I), YIN(I)
FORMAT (2F10.4)

IF (NTYPE-1) 30,31, 30
DO 32 I=1,N
X(I)=10.%%*X(I)
YIN(I)=10.%* (-YIN(I)/2.)

X=EXPOSURE VARIABLE
YIN=DENSITY VARIABLE

DETERMINE LOCAL INTERVALS
DO 9 K=1,NAMP

DO 8 L=1,N
NP1=NP(K)
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NB=(L-1) *NSTEP+1
NE=NB+NP (K) -1
IF (NE-N) 3,3,9

NORMALIZE LOCAL INTERVAL TO (-1,1)

DO 2 I=NB,NE
NUM1=I-NB+1
XN(NUMl)=(2.*X(I)—X(NE)—X(NB))/(X(NE)—X(NB))

SEARCH FOR XN OUTSIDE (-1,1)
DO 201 I=1,NPl
IF (1.-XN(I)*XN(I)) 200,201,201
WRITE (3,202) I,XN(I),L,K
FORMAT (' ', XN(',I3,')=',Ell.4,' IN LINE', I3,'
*OF AMPLITUDE',I3)
IF(XN(I)) 203,203,204
XN (I)=.999999
GO TO 201
XN(I)=-.999999
CONTINUE

ADJUST Y VALUES

DO 4 J=1,NPl
NUM2=NB+J-1
4Y (J)=YIN (NUM2)

COMPUTE EXPANSION

M=NORD (K)+1
DO 5 I=1,M
N1=NP(K)-1
AT(K,L,I)=0

AT(K,L,I)=TCHEB COEFF FOR AMP (K) , INTERVAL (L)
"ORDER+1=I

Il=1-1
I2=I-2

DO60 J=1,N1

IF(XN(J)) 301,100,101

ARGL=ATAN (SQRT (1.-XN (J) *XN (J) ) /XN (J) ) +3.
*141592

GO TO 104

ARG1=1.570796

GO TO 104

ARGL=ATAN (SQRT (1.~-XN (J) *XN (J) ) /XN (J) )
IF(XN(J+1)) 303,102,103
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ARG2=ATAN (SQRT (1. -XN(J+1)*XN(J+1))/XN(J+1))
*4+3,141592

GO TO 105

ARG2=1.570796

GO TO 105
ARGZ—ATAN(SQRT(l<—XN(J+1)*XN(J+1))/XN(J+11)
AO=(Y(J) *XN(J+1)~-Y (J+1)*XN(J) )/ (XN (T+1)-XN(J))
Al=(Y(J+1)-Y(J) )/ (XN (J+1)-XN(J))

IF (I-2) 107,108,109
AT(K.L.I)=AT(K,L,I)+ (AO* (ARG1-ARG2)+Al*(SIN "’
*ARG1)-SIN (ARG2)))

GO TO 60

AT(K,L,I)=AT(K,L,I)+(.5*%A1* (ARGL-ARG2)+A0* (
*SIN (ARG1l) -SIN(ARG2) )+1.2.5%A1l* (SIN(2.*ARG1) -
*SIN (2.*ARG2)))

GO TO 60

AT(K,L,I)=AT(K,L,I)+(.5%Al* (SIN(I2*ARGl)~-SIN
*(I2*ARG2))/I2

1+AO* (SIN(I1*ARGLl)-SIN(I1*ARG2))/Il

2+ .5%A1*SIN (I*ARG1l) -SIN (I*ARG2))/I)

CONTINUE

AT(K,L,I)=AT(K,L,I)/1.570796

X0 (K,L)=.5% (X(NB)+X (NE))

CHECK FOR COEFFICIENTS LESS THAN NOISE LEVEL

DO 7 I=1,M
ATAB=ABS (AT(K,L,I))
IF (ATAB-ERR) 6,7,7
AT(K,L,I)=0.0
CONTINUE

COMPUTE NSR,1/S /

ERPS (K, L) =ESTIMATE OF NUMERICAL ERROR IN FER(K, L)
SNR(K, L) =RECIPROCAL OF SQUARED FUNDAMENTAL
AMPLITUDE

FER(K,L)=NOISE TO SIGNAL RATIO
SIG2=AT(K,L, 2)*AT(K, L, 2)

HAR2=0.0

DO 13 I=3,M

HAR2=HAR2+AT(K,L,I)*AT(K, L, I)

IF(S1c2) 15,14,15

FER(K,L)=0.0

ERPS(K,L)=0.0

SNR(K,L)=0.0

GO TO 8

FER (K, L)=HAR2/SIG2

SNR(K,L)-1./8S1G2

ERR1=ERR*ERR

ERPS (K, L)=ERR1/SIG2
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NORMALIZE COEFFICIENTS IF SPECIFIED

IF (NORM-1) 8,18,8

IF (AT(X,L,2)) 16,8,16

DO 17 I=3,M
AT(K,L,I)=AT(X,L,I)/AT(XK,L, 2)
LSAVE (K) =L

CONTINUE

WRITE RESULTS

DO 11 I=1,NAMP

NUM3=NP (I)

AMP=X (NUM3) -X (1)

WRITE (3, 24) PR,PRl,PR2,N,NP(I),NORM, ERR

24 FORMAT('l',2A4,A2,' N=',I3,' NP=',I3,' NORM=',

25

11

26

*12,' ERR=!,E10.3)"

WRITE (3, 25)

FORMAT(' ', 'NB',4X, 'X2ZRO',5X, 'XINT', 5%,
*'YINT",5X, 'NSR', 9%,

1'DNSR',8X, '1/S',9X, 'TCHEBYSCHEFF EXPANSION
*COEFFICIENTS')

MM=NORD (I)+1

LS=LSAVE (I)

DO 11 J=1,LS

NB=(J-1) *NSTEP+1

NE=NB+NP (I)-1

XINT=X (NE)-X(NB)

YINT=YIN (NE)-YIN (NB)

WRITE (3, 26) NB,XO(I,J),XINT,YINT, FER(I,J),
*ERPS (I,J),SNR(I,J)

1(AT(I,J,K),K=1,MM)
FORMAT('0',I3,1X,3F9.3,1X,8(E1l.4,1X) /69X,
*5(E11.4, 1X))

GO TO 500

END



